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The rapid and accurate in silico prediction of protein-ligand binding free energies or binding
affinities has the potential to transform drug discovery. In recent years, there has been a
rapid growth of interest in deep learning methods for the prediction of protein-ligand
binding affinities based on the structural information of protein-ligand complexes. These
structure-based scoring functions often obtain better results than classical scoring
functions when applied within their applicability domain. Here we review structure-
based scoring functions for binding affinity prediction based on deep learning,
focussing on different types of architectures, featurization strategies, data sets,
methods for training and evaluation, and the role of explainable artificial intelligence in
building useful models for real drug-discovery applications.
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1 INTRODUCTION

The discovery and development of new small-molecule drugs is a very challenging and expensive
process (Drews 2000; Dickson and Gagnon 2004; Schneider and Schneider 2016). Only a handful of
new drugs are approved each year (Brown and Wobst 2021), which is minuscule compared to the
vastness of chemical space (Reymond et al., 2010) and the billions of dollars poured into drug
discovery campaigns (DiMasi et al., 2016). The discovery pipeline for small-molecule drugs usually
starts with the identification of a protein target against which a hit compound is identified by high
throughput screening (HTS) (Mayr and Bojanic 2009; Macarron et al., 2011). The hit compound is
subsequently optimized to obtain a lead compound with good potency and favorable
pharmacodynamics and pharmacokinetics properties.

Thanks to significant methodological and hardware advances, computer-aided drug discovery
(CADD) has played an important role in the development of new small-molecule drugs over the last
decades (Sliwoski et al., 2013). CADD speeds up the early stages of the drug discovery process—hit
identification and hit-to-lead optimization—and lowers the costs of these phases by reducing time
and experimental resources needed. CADD methods fall into two broad classes: (explicit) structure-
based, and ligand-based (or implicit structure-based) methods. For the latter, similarities to known
active molecules play an important role since either the protein target is unknown, or information
about the protein target is either unavailable or not included. For structure-based methods, the target
structure is known and this additional information is exploited in the modelling and optimization of
drug-target interactions (DTIs).
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One of the main goals in the computational elucidation of
DTIs is the calculation of relative or absolute binding free energies
to distinguish potent binders from weak binders (or non-binders)
against a target of interest. A fast and accurate prediction of
protein-ligand binding affinities would circumvent the need for
many time-consuming and complex experiments. Rigorous
computational methods based on all-atom molecular dynamics
simulations in explicit solvent—such as free energy perturbation
and thermodynamic integration (Adcock and McCammon
2006)—can compute accurate relative and absolute binding
free energies (Bash et al., 1987; Boresch et al., 2003; Mobley
et al., 2007; Aldeghi et al., 2016, Aldeghi et al., 2018a; Cournia
et al., 2017), predict ligand selectivity (Aldeghi et al., 2017) and
mutation effects (Aldeghi et al., 2018b; Hauser et al., 2018), and
guide fragment elaborations (Alibay et al., 2022). Unfortunately,
such rigorous methods are computationally expensive and often
require a lot of expert knowledge and domain expertise (Mey
et al., 2020; Hahn et al., 2021). This remains true even for simpler
methods such as ligand-interaction energy (LIE) (Åqvist et al.,
1994; Jones-Hertzog and Jorgensen 1997). Methods treating the
solvent implicitly, such as the Poisson-Boltzmann and
generalized Born models (Genheden and Ryde 2015), can offer
significant speed increase but sometimes at the expense of
accuracy.

The great successes of deep learning (DL) in the fields of
computer vision (Voulodimos et al., 2018), natural language
processing (NLP) (Young et al., 2018), and other fields of
computer science in recent years kick-started the research and
application of deep learning in many scientific disciplines
including physics, chemistry, biology, and medicine (Baldi
2021). In the field of drug discovery, machine learning (ML)
has been in use for a long time, and the potential usefulness of the
use of deep learning in virtual screening was identified early on
(Unterthiner et al., 2014). The application of modern deep
learning architectures to all stages of the drug discovery
pipeline is a very active area of research today (Jing et al.,
2018; Brown, 2020; Muratov et al., 2020; Jiménez-Luna et al.,
2021a; Gaudelet et al., 2021). The main applications in small-
molecule drug design consists in the prediction of DTIs,
identification of binding sites (Jiménez et al., 2017; Pu et al.,
2019; Aggarwal et al., 2021), the generation of novel molecular
entities (Schneider and Clark 2019; Meyers et al., 2021), and the
prediction of absorption, distribution, metabolism, excretion, and
toxicity (ADMET) properties (Huang D. Z. et al., 2021).

Bioactivity prediction can be performed as a classification
task—where binders/actives are distinguished from non-binders/
inactives—or as a regression task. Machine learning and deep
learning scoring functions (SFs) for the prediction of binding
affinities (regression) are useful in lead optimization, in contrast
with SFs that try to identify binders amongst a large pool of non-
binders (classification) and are used in virtual screening to
identify a hit. Another task where SFs are commonly used is
pose prediction, where near-native poses are distinguished from
incorrect poses (classification). Pose prediction and binding
affinity prediction are complementary tasks in molecular
docking, where a pose is generated and subsequently scored
according to the predicted binding affinity.

In this review, we will focus on SFs for binding affinity
prediction (inhibition constant Ki or dissociation constant
Kd) or binding free energy prediction, but we will inevitably
mention related SFs used in pose prediction and virtual
screening—which often share the same algorithms and ideas.
Recent reviews of structure-based SFs and deep learning for
virtual screening are given by Li et al. (2021b), Kimber et al.
(2021), and Rifaioglu et al. (2019). Additionally, to narrow the
scope of the review, we focus on structure-based deep-learning
methods and we refer the reader interested in ligand-based
methods to Tropsha (2010), Muratov et al. (2020), Baskin
(2020), and Palazzesi and Pozzan (2022). More general and
broad reviews about the application of machine learning
and deep learning in drug discovery are provided by Chen H.
et al. (2018), Vamathevan et al. (2019), and Schneider et al.
(2019).

2 CLASSICAL SCORING FUNCTIONS

Historically, SFs for binding affinity prediction and virtual
screening have been classified into three categories: force-field-
based, empirical, and knowledge-based (Muegge and Rarey 2001;
Böhm and Stahl 2002). However, recently Liu and Wang (2015)
argued that this historical classification overlooks more recent
developments in the field and thus proposed an updated
classification scheme with four classes of scoring functions:
force-field-based or physics-based, empirical or regression-
based, knowledge-based or potential of mean force-based, and
descriptor-based or machine learning-based.

This classification is useful to distinguish different
methodologies and ideas appearing in the development of SFs.
However, some SFs can’t be precisely assigned to only one
category and the boundary between the four different classes
remains rather fuzzy.

In this section we will briefly discuss the first three classes of
SFs, often termed “classical” SFs. A good overview of the different
SFs can be found in the paper of Liu and Wang (2015)—which
proposed the current classification of SFs—and a more recent
overview of different SFs used in protein-ligand docking is
provided by Li et al. (2019a). While classical scoring functions
are still actively developed and refined today, the research focus
has certainly shifted to ML/DL based scoring functions.

2.1 Physics-Based (Force-Field Based)
Scoring Functions
Physics-based (or force-field-based) SFs use energy terms of a
molecular mechanics force-field—whose parameters are
determined to reproduce experimental observables or ab initio
quantum mechanical calculations (Monticelli and Tieleman
2012)—to evaluate protein-ligand interactions. The non-
covalent interaction energy between protein and ligand atoms
is usually expressed as the sum of van der Waals and electrostatic
interaction terms. In their simplest form, such pairwise
interactions are represented by a Lennard-Jones potential and
Coulomb interaction between point charges.
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Different physics-based scoring functions use different
potentials to describe van der Waals and electrostatic
interactions, depending on the design of the underlying force
field. For example, the dielectric constant can be distance-
dependent to take into account electrostatic screening due to
the solvent and the lower dielectric constant in protein-ligand
binding sites (Hingerty et al., 1985; Gilson and Honig 1986;
Huang et al., 2010).

Often, additional shorter-range (and sometimes directional)
terms are added to account for hydrogen bonding as well as
solvation energy and therefore physics-based scoring function
can take the following form:

ΔGbinding � ΔEVdW + ΔEel + ΔEH−bond + ΔGsol. (1)
The solvation energy term can take into account both polar

and non-polar contributions. The former accounts for the loss of
polar interactions between charged groups and water, while the
latter accounts for the desolvation of hydrophobic groups upon
binding.

Finally, empirical terms accounting for the loss of torsional
degrees of freedom upon complexation can also be included.
Oftentimes, simple approximations based on the number of
rotatable bonds are used (Böhm 1994; Chang et al., 2007;
Huey et al., 2007; Huang and Zou 2010), although more
advanced treatments have been suggested (Guedes et al.,
2021b). The same corrections are applied to empirical and
knowledge-based scoring functions, discussed below.

Force-field-based scoring functions are attractive because of
their physical origin and because they can leverage advances in
force-field developments, including the latest advances in ML
force-fields (Unke et al., 2021). However, describing solvent
effects in ligand binding remains an outstanding challenge
(Limongelli et al., 2012; Ross et al., 2012; Darby et al., 2019).

Notable examples of physics-based (force field-based) scoring
functions are DOCK (DesJarlais et al., 1988; Meng et al., 1992;
Shoichet et al., 1992; Ewing et al., 2001; Moustakas et al., 2006;
Allen et al., 2015), AutoDock (Goodsell and Olson 1990) and
AutoDock 2 (Morris et al., 1996) (AutoDock 3 and AutoDock 4
use hybrid scoring functions (Morris et al., 1998; Huey et al.,
2007; Morris et al., 2009)), GoldScore (Jones et al., 1995, Jones
et al., 1997), and GalaxyDock (Shin and Seok 2012; Shin et al.,
2013).

2.2 Empirical (Regression-Based) Scoring
Functions
Empirical or regression-based scoring functions are based on
regression analysis to determine the coefficient of different pre-
defined terms based on experimental data. This is also what
machine learning (or descriptor-based) scoring functions do,
however in empirical or regression-based scoring functions the
functional form of the scoring function is predetermined and it is
often quite simple (such as a linear combination of different
contributions) (Ain et al., 2015). As we mentioned previously, the
line between the four different classes of scoring functions
suggested by Li et al. (2019a) is sometimes blurry.

Empirical scoring functions assuming a linear functional form
take the following form (Guedes et al., 2018):

ΔGbinding � w0 + w1ΔGVdW + w2ΔGH−bond + w3ΔGentropy. (2)
The functional form of empirical scoring functions is similar to
physics-based scoring functions. However, in empirical scoring
functions the parameters w are determined by regression
analysis—usually multivariate linear regression or partial least
squares (Li et al., 2019a)—to reproduce experimentally
determined values.

Often, the different terms in empirical scoring functions are
simple reward or penalty scores. For example, the ChemScore
(Eldridge et al., 1997; Verdonk et al., 2003) scoring function has
the following functional form:

ChemScore � w0 + w1Shbond + w2Smetal + w3Slipo + w4Hrot + Eint + Eclash + Ecov

(3)
where Shbond is the score assigned to hydrogen bonds, Smetal scores
acceptor-metal interactions, Slipo scores lipophilic interactions,
Hrot describes the loss in conformational entropy upon
complexation, Eint is the ligand’s internal energy, Ecov is the
covalent energy term, and Eclash represents the energetic
penalty of clashes between protein and ligand atoms.

One of the first empirical scoring functions was introduced by
Böhm (1994) and notable examples include ChemScore (Eldridge
et al., 1997; Verdonk et al., 2003), X-Score (Wang et al., 2002),
Glide (Friesner et al., 2004, 2006) DockThor (de Magalhães et al.,
2014), SFCscore (Sotriffer et al., 2008). More recent scoring
functions are Vinardo (Quiroga and Villarreal 2016), Lin_F9
(Yang and Zhang 2021), DockTScore (Guedes et al., 2021a)
(combined with ML), and AA-Score (Pan et al., 2022).

A fairly recent review of empirical scoring functions for
structure-based virtual screening is provided by Guedes et al.
(2018).

2.3 Knowledge-Based (Potential-Based)
Scoring Functions
Knowledge-based or potential-based scoring functions are based
on pairwise statistical potentials of the form:

S � ∑
i∈lig

∑
j∈prot

ωij r( ), (4)

where the distance-dependent pairwise potential ωij(r) is
given by:

ωij r( ) � −kbT ln
ρij r( )
ρ0ij

s( ). (5)

ρij(r) is the number density of pairs of type i-j at distance r while
ρ0ij is the same quantity for a reference state where there is no
interaction between types i and j (Muegge and Martin 1999).
Therefore, if ρij(r) is larger than the reference state ρ0ij it
contributes favorably to the scoring function while if ρij(r) is
smaller than the reference state ρ0ij then it contributes unfavorably
to the scoring function. The pairwise potentialsωij(r) are obtained
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from the analysis of interactions in a large data set of protein-
ligand complexes and usually, only pairs of protein and ligand
atoms within a certain cutoff are considered (r < rcutoff).

One of the advantages of knowledge-based scoring functions is
that entropic and solvation contributions are taken into account
implicitly (Muegge and Martin 1999). However, some
knowledge-based scoring functions include solvation and
entropy effects explicitly (Huang and Zou 2010).

Notable examples of knowledge-based (potential-based)
scoring function are the SMoG (DeWitte and Shakhnovich
1996; DeWitte et al., 1997) (later extended to a hybrid
knowledge-based and empirical scoring function (Debroise
et al., 2017a)), the PMF scoring function developed by Muegge
and co-workers (Muegge and Martin 1999; Muegge 2000,
Muegge 2001), DrugScore (Gohlke et al., 2000; Velec et al.,
2005; Neudert and Klebe 2011; Dittrich et al., 2018), ITScore
(Huang and Zou 2006a; Huang and Zou 2006b, Huang and Zou
2010), KECSA (Zheng and Merz 2013), and M-score (Yang et al.,
2005). More recent knowledge-based scoring functions are SMoG
2016 (Debroise et al., 2017b), Convex-PL (Kadukova and
Grudinin 2017), DLIGAND2 (Chen P. et al., 2019), and
KORP-PL (Kadukova et al., 2021).

3 DATA SETS

To train ML and DL SFs, high-quality and reasonably large data
sets are essential. The success of supervised machine learning and
deep learning algorithms strongly depends on the quality and the
size of the data set used for training. Thanks to the advances in
high-throughput X-ray crystallography and cryo-electron
microscopy (cryoEM), the number of available high-resolution
structures in the Protein Data Bank (PDB) is constantly
increasing (Goodsell et al., 2019b).

In this section, we briefly discuss some of the most common
data sets encountered in the training and evaluation of machine
learning and deep learning structure-based SFs for binding
affinity prediction. The main data sets providing both co-
crystal structures and experimental binding affinities are listed
in Table 1.

3.1 PDBbind
The PDBbind dataset (Wang et al., 2004) is a curated subset of the
PDB and it is arguably one of the most common data sets used to
train ML and DL SFs for protein-ligand binding affinity
prediction. The dataset also contains protein-protein and
ligand-nucleic acid complexes.

The origin of the database can be traced back to 2004, when
Wang et al. (2004) collected protein-ligand complexes from the
PDB (release 103, January 2003) and screened the primary
references of the identified complexes to extract binding
affinity data (Kd, Ki, IC50).

To train ML and DL SFs, high-quality data is
essential—although it has been demonstrated that including
lower quality data can improve performance (Li et al., 2015;
Francoeur et al., 2020). The PDBbind database is therefore split
into a “refined” set and a “general” set (Wang et al., 2004, Wang
et al., 2005). The “refined” set is a selection of protein-ligand
crystal structures with a resolution of 2.5 Å or lower, where there
is a single ligand that is non-covalently bound without significant

TABLE 1 | Main data sets providing protein-ligand complexes (crystal structures) and corresponding binding affinities. N is the number of protein-ligand complexes (co-
crystal structures) with associated binding affinities.

Data Set N Superset Website

PDBbind 2020 19 443 — pdbbind.org.cn

CASF-2016 285 PDBbind 2016 pdbbind.org.cn

CASF-2013 195 PDBbind 2013 pdbbind.org.cn

CASF-2007 195 PDBbind 2007 pdbbind.org.cn

Binding MOAD 2020 15 223 — bindingmoad.org

CSAR-NCS HiQ 343 Binding MOAD + PDBbind csardock.org

CSAR-NCS HiQ Update 123 Binding MOAD + PDBbind csardock.org

Astex Diverse Set 74 — doi.org/10.1021/jm061277y

BindingDB 11 442 — bindingdb.org

D3R GC 4 20 — drugdesigndata.org

D3R GC 3 24 — drugdesigndata.org

D3R GC 2 36 — drugdesigndata.org

D3R GC 2015 24 — drugdesigndata.org

FIGURE 1 | | Schematic representation of a structure-based deep
learning architecture—with several hidden layers—for binding affinity
prediction. The protein-ligand complex (PDB ID: 5S9H, rendered with Illustrate
(Goodsell et al., 2019a)) is encoded into a suitable representation that is
used as input to the deep learning architecture. Using a series of stacked
hidden layers, a prediction of the binding affinity is finally obtained. The exact
nature of the input layer as well as the hidden layers depends on the type of
architecture under consideration.
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steric clashes (Wang et al., 2005). Only systems with associated
equilibrium constants Ki and Kd are included in the refined
set—IC50 values depend on the design of the binding
assay—and complexes are filtered to only contain common
organic elements.

The same approach was used to build the PDBbind refined set
version 2007 (Cheng et al., 2009), but it was improved to produce the
PDBbind refined set 2013 and subsequent versions (Li et al., 2014b;
Liu et al., 2014, 2017). In addition to the previous criteria used to
compile the PDBbind refined set 2007, the complexes added to the
PDBbind refined set 2013 satisfy the following additional criteria (Li
et al., 2014b): no missing backbone or side chain fragments within
8 Å from the ligand, no extreme values of binding affinity (1 pm <
K < 10mm, where K = {Ki, Kd}), no multiple binding sites with
significantly different binding affinities (> 10 folds difference), no
non-standard amino acids within 5 Å from the ligand, and no
shallow binders (< 15% of buried ligand surface). The rules for
selecting protein-ligand complexes into the PDBbind refined set
2013, together with their rationale and the difference with the rules
used for the PDBbind refined set 2007, are very clearly summarized
by Li et al. (2014b).

The PDBbind dataset can be downloaded from
pdbbind.org.cn. The current release (PDBbind 2020)
collects binding affinities and structural data for 23 496
biomolecular complexes, 19 443 of which are protein-ligand
complexes.

3.1.1 CASF
The CASF benchmarks are a series of comparative assessments of
scoring functions originally introduced by Cheng et al. (2009).
They evaluate different scoring functions for their performance
on scoring, ranking, docking, and screening on a diverse and
high-quality set of protein-ligand complexes. Originally
employed to compare mostly classical SFs, it has become the
de facto standard for an initial evaluation of ML and DL SFs
(especially for protein-ligand binding affinity prediction).

To test different scoring functions on a diverse and high-
quality data set of protein-ligand complexes, a data set is extracted
from the PDBbind refined set (where high-quality complexes
have already been identified). The PDBbind refined set is
clustered according to sequence similarity using BLAST
(Altschul et al., 1990), with a similarity threshold of 90%
(Cheng et al., 2009). This means that proteins with a sequence
similarity higher than 90% are collected in the same cluster since
they are likely to represent the same protein or the same protein
family.

Once proteins from the PDBbind refined set are clustered by
sequence similarity, clusters containing at least four complexes
are retained (Cheng et al., 2009). This results in a total of 65
clusters, from which three complexes are sampled: the complex
with lower binding affinity, the complex with higher binding
affinity, and the complex with binding affinity closer to the mean
between the highest and lowest binding affinities (Cheng et al.,
2009). This clustered sub-sampling of the PDBbind refined set
(called PDBbind core set) results in a total of 65 × 3 = 195 protein-
ligand complexes used for the first comparative assessment of
scoring functions (CASF-2007).

For the CASF-2013 comparative assessment of scoring
functions (Li et al., 2014a), the construction of the PDBbind
core set was improved by using the same sequence similarity
program used by the PDB, and only clusters with five (and not
four) proteins were retained (Li et al., 2014b). Additionally, the
best binding affinity has to differ at least 10-fold from the median
binding affinity, and the median binding affinity has to differ at
least 10-fold from the poorest binding affinity (Li et al., 2014b).
The electron density maps of the remaining complexes were
visually assessed; if a complex failed at this step, the next best
candidate was selected amongst the same cluster (Li et al., 2014b).
The final PDBbind core set 2013 still consists of 195 protein-
ligand complexes from 65 protein clusters (Li et al., 2014b).

The core set for CASF-2016 (Su et al., 2018) brought
additional refinements and more data. As usual, the systems
within the high-quality benchmark set are selected from the
4057 protein-ligand complexes in the PDBbind refined set
(version 2016). The clustering of complexes based on protein
sequence similarity remains the same. However, for CASF-2016,
five representatives of each cluster were selected instead of the
three selected for CASF-2007 and CASF-2013 (Su et al., 2018).
The representative complexes were selected according to their
binding affinity: the complex with the lowest binding affinity, the
complex with the highest binding affinity, and three complexes
distributed as evenly as possible between the lowest and highest
binding affinity (Su et al., 2018). The lowest and highest binding
affinities differ at least 100-fold and the difference between
consecutive binding affinities is at least 1-fold. All ligands were
inspected to ensure that there are no identical ligands or
stereoisomers (Su et al., 2018). The final PDBbind core set
(CASF-2016 benchmark set) consists of 57 × 5 = 285 protein-
ligand complexes and it is arguably one of the test sets
encountered more frequently in the development of ML and
DL SFs.

Unlike the PDBbind data set, the CASF benchmark is not
updated annually and therefore the latest release to date remains
CASF-2016. The CASF benchmark packages can be downloaded
from pdbbind.org.cn/casf.php.

It is very common for ML and DL SFs to be trained on the
PDBbind refined or general set and subsequently tested on the
CASF benchmark set. Recently, non-redundant subsets of the
PDBbind refined set were introduced by Boyles et al. (2019) and
Su et al. (2020) to evaluate the ability of ML and DL SFs to
generalize when removing increasingly dissimilar examples from
the training set that have some similarities with the CASF
benchmark set.

3.2 Binding MOAD
The Binding MOAD (Mother Of All Databases) (Hu et al., 2005;
Benson et al., 2007; Ahmed et al., 2014; Smith et al., 2019) is a
subset of the PDB that collects high-quality and biologically
relevant crystal structures of protein-ligand complexes together
with experimentally determined binding affinities. Ligands
available in the Binding MOAD include small peptides (ten
amino acids or less), small oligonucleotides (four nucleotides
or fewer), small and drug-like organic molecules, and enzymatic
cofactors. Crystal structures have a resolution better than 2.5 Å.
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As for the PDBbind data set, experimental binding affinities are
collected from the primary reference of the deposited PDB
structure and consists of only Ki, Kd or IC50 values.

The Binding MOAD was first introduced in 2005, containing
5331 protein-ligand complexes from 1780 unique protein families
and 2630 unique ligands (Hu et al., 2005). 1375 protein-ligand
complexes were associated with binding affinity data spanning 13
orders of magnitude (Hu et al., 2005). The 1780 unique protein
families were used to create a non-redundant subset for which
475 complexes have binding affinity data (Hu et al., 2005).

The Binding MOAD is extracted from the PDB as follows (Hu
et al., 2005). The full PDB database is screened for high-resolution
structures (better than 2.5 Å) excluding theoretical models and
NMR structures. Structures containing nucleic acids larger than
four nucleotides and peptides longer than ten amino acids were also
discarded. Subsequently, complexes with covalently bound ligands
as well as invalid ligand structures were filtered out. This reduced
database of protein-ligand complexes is hand-curated: the primary
citation associatedwith each structure is screened for binding affinity
data while some “suspect ligands” were flagged for visual inspection,
resulting in the final database of 5331 protein-ligand complexes.

The Binding MOAD has been expanded annually over the
years by adding new protein-ligand complexes deposited on the
PDB (together with binding affinity data), resulting in 23 269 total
entries and 8156 entries with associated binding affinities in 2015
(Ahmed et al., 2014). In 2019, the Binding MOAD contained
32 747 structures comprising 9117 unique protein families and
16 044 unique ligands.

The Binding MOAD and the PDBbind databases are curated
in a similar fashion, to the point that the two data sets could be
compared to find and fix disagreements in overlapping systems
(Hu et al., 2005). However, the Binding MOAD includes
complexes with only binding cofactors, complexes with both a
ligand and a cofactor present, and also includes high-quality
complexes without binding affinity data (Hu et al., 2005).

Given that the development of the PDBbind was mostly driven
by the development of scoring functions (Cheng et al., 2009; Li
et al., 2014b,a; Su et al., 2018) while the development of the
Binding MOAD was primarily driven by research on protein
binding site prediction (Clark et al., 2020) and protein flexibility
(Clark et al., 2019), it is more common to encounter the former in
the development of ML and DL SFs. However, Binding MOAD
can be certainly used for assessing the performance of scoring
functions in binding affinity prediction (Xavier et al., 2016) and
has been used to build the CSAR dataset discussed below.

3.2.1 CSAR
The CSAR dataset is a data set associated with the Community
Structure-Activity Resource (CSAR) which has the goal of
collecting high-quality data from both academia and industry
to improve docking scoring functions and to organize
community-wide assessments of current methods (Dunbar
et al., 2011).

The first CSAR data set consisted of protein-ligand complexes
from the PDB for which experimental binding affinities (Ki or Kd

values) were available in the Binding MOAD database,
augmented with data from the PDBbind; Dunbar et al. (2011)

describe the CSAR data set as “the best of the PDB [. . .]
augmented with binding data from Binding MOAD and
PDBbind”. The data set consists of 343 protein-ligand
complexes which span binding affinities over several orders of
magnitude.

The CSAR data set is subdivided into two subsets: Set 1, and
Set 2. Initially, 2916 protein-ligand complexes were identified in
the Binding MOAD database (version 2006) and filtered down
to 1241 entries according to the quality of the crystal structures.
Further processing consisted of the removal of ligands for which
hybridization states and bond orders could not be automatically
inferred, and for which the experimental binding affinity was
expressed in terms of IC50 values. This resulted in a total of 309
complexes with associated Ka, Kd and Ki values. Later on, an
additional 1228 complexes from Binding MOAD (versions 2007
and 2008) were processed to obtain an additional 230 complexes
with associated binding affinity data. After moving some
complexes between the two groups to balance
physicochemical properties, the final data set representing the
initial release consisted of Set 1 (242 entries) and Set 2 (297
entries). Following community feedback, a more stringent
quality assessment of the crystal structures was applied, thus
reducing the size of the two sets, and errors concerning binding
affinities were corrected. Following the CSAR benchmark
exercise (Smith et al., 2011), the two sets were further
processed resulting in the CSAR-NCS HiQ data set
(September 2010), subdivided into Set 1 (176 entries) and Set
2 (167 entries). The CSAR-NCS HiQ data set consists of 52
protein targets with 2 or more structures and 191 targets with a
single structure.

The CSAR-NCS HiQ dataset was subsequently updated with
an additional 123 structures (set 3) applying the same criteria of
the CSAR-NCS HiQ data set to structures in Binding MOAD
added between 1/1/2009 and 12/31/2011.

The CSAR-NCS HiQ data set Dunbar et al. (2011), its update,
and other data sets associated with the CSAR benchmark
exercises (Damm-Ganamet et al., 2013; Dunbar et al., 2013;
Smith et al., 2015; Carlson et al., 2016) can be downloaded
from csardock.org or bindingmoad.org.

3.3 Astex Diverse Set
The Astex Diverse Set is another common data set encountered in
the validation of protein-ligand scoring functions (Hartshorn
et al., 2007), alongside the CASF and CSAR benchmarks. This
data set contains 85 protein-ligand complexes, most of which are
associated with experimentally measured binding potency.

The diverse set was obtained as follows. First, proteins from
the PDB database were clustered based on sequence similarity
leading to 9188 clusters of distinct proteins. Then, ligands bound
to the clustered proteins were then screened to select high-quality
structures of pharmaceutical or agrochemical interest and were
filtered according to drug-likeliness criteria. The selected protein-
ligand complexes were further assessed in terms of ligand clashes
with the binding site residues, possible problems related to
spurious interactions, and quality of the ligand electron
density. This automated filtering procedure resulted in 427
clusters with high-quality protein-ligand complexes.
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The final Astex Diverse Set was manually curated from the 427
clusters resulting in 85 complexes. Potency data for 74 of the 85
complexes was finally extracted from the literature.

3.4 Other Data Sets
The data sets described above are curated collections of binding
affinities and structures and are therefore useful for the
development and assessment of structure-based SFs for
protein-ligand binding affinity predictions, both using classical
and ML/DL scoring functions. However, there are several other
data sets that might be useful to build and assess scoring
functions, and some are briefly described below.

ChEMBL (Gaulton et al., 2011; Bento et al., 2013; Mendez
et al., 2018) is a manually curated database of bioactive molecules,
where data about drug-like molecules are collected together with
results from bioactivity assays and genomic information.
ChEMBL version 29 (10.6019/CHEMBL.database.29)
contains data about 21 05 464 compounds and 14 554 targets.
While ChEMBL is an extremely valuable resource and provides a
large amount of binding affinity data, it does not contain
structural data and it is, therefore, more commonly
encountered in the development and assessment of ligand-
based models (such as in Riniker and Landrum (2013a)).

The bioactivity data in ChEMBL is also exchanged with
PubChem Bioassay (Wang et al., 2009, 2011) and BindingDB
(Chen et al., 2001; Liu et al., 2007). The PubChem Bioassay
database is a public repository containing bioactivity data for
small molecules collecting more than 130 million assay results
together with their protocols, while the BindingDB is a public
database of experimental binding affinities between proteins
(8,644 as of 8 November 2021) and drug-like molecules
(1,023,385 as of 8 November 2021) which is accessible via a
web interface. The BindingDB also contains 5988 protein-ligand
crystal structures with associated binding affinity
measurements.

Data sets released as part of the Drug Design Data Resources
(D3R) Grand Challenges also constitute important datasets on
which several ML and DL scoring functions have been designed
or tested. D3R Grand Challenges promote the development and
benchmarking of computational methods for binding pose and
binding affinity prediction, by organizing blinded community
challenges using high-quality data sets of pharmaceutical interest.
The first D3R Grand Challenge was based on two targets
(Gathiaka et al., 2016) using data from industrial drug
discovery programs. Subsequent challenges (Gaieb et al., 2017,
2019; Parks et al., 2020) introduced novel targets and associated
data for the blind prediction of binding poses, affinity rankings,
and relative binding free energies. All the data sets are now easily
accessible on the D3R website (drugdesigndata.org) as
additional test sets for the development and evaluation of ML and
DL scoring functions. Interestingly, in the D3R Grand Challenge
3 an increased number of ML methods was observed but overall
they did not seem to perform any better than standard methods
(Gaieb et al., 2019).

The databases that do not contain target structures are often
employed to build ligand-based models or are used to put
together new data sets with three-dimensional structures by

generating different conformers for the ligand and collecting
target structures from the PDB (Bernstein et al., 1977; Berman
et al., 2000) to subsequently build structure-based models. For
example, Boyles et al. (2021) recently released a new
dataset—called the Updated DUD-E Diverse Subset—which
combines data from the Directory of Useful Decoys
Enhanced (DUD-E) data set (Mysinger et al., 2012) and
ChEMBL.

Some data sets for binding affinity prediction discussed above
are collected into benchmark data sets such as MoleculeNet (Wu
et al., 2018) and Therapeutic Data Commons (Huang K. et al.,
2021), which provide much-needed collections for the evaluation
of different machine learning and deep learning methods for
molecular properties prediction as well as drug discovery and
development.

4 MACHINE LEARNING AND DEEP
LEARNING SCORING FUNCTIONS

Machine learning (or descriptor-based) scoring functions have
been developed and used for decades (Brown 2020). The simplest
“scoring functions”—more commonly known as QSAR
(Quantitative Structure-activity Relationship) models—were
based on a small set of handcrafted descriptors and simple
models (such as multiple linear regression Morris et al. (1998);
Böhm (1992)), and typically ligand-based. Later, other machine
learning (ML) algorithms—such as support vector machines
(SVM) (Boser et al., 1992; Cortes and Vapnik 1995), random
forests (RFs) (Ho 1995, Ho 1998; Breiman 2001), and gradient
boosting (Mason et al., 1999; Friedman 2002)—have been applied
in attempt to learn non-linear relationships between descriptors
and the binding affinity. Figure 1 shows a schematic
representation of a structure based deep learning architecture
for binding affinity prediction.

For an in-depth and rigorous introduction to the deep learning
(DL) architectures described below the reader should consult
Goodfellow et al. (2016), while classical ML methods are
described thoroughly in Bishop (2006), to which we refer the
interested reader. For a more hands-on introduction to both ML
and DL the reader should consult Géron (2019).

4.1 Descriptors
Descriptors for ML and DL SFs can encode information about the
ligand, about the protein, or about intermolecular interactions in
the protein-ligand complex. Ligand descriptors are commonly
used in cheminformatics applications, quantitative structure-
activity relationship (QSAR) modelling, and ligand-based
virtual screening (Lo et al., 2018). Ligand-based descriptors
can be combined with descriptors for the protein commonly
employed in ML-based protein engineering (Xu et al., 2020) to
obtain a SF that combines separate information about the ligand
and the protein. However, here we focus on structure-based
descriptors that encode the protein-ligand complex as a whole
and form the basis for structure-based SFs. Methods that combine
separate ligand and protein descriptors (van Westen et al., 2011),
known as “pair methods” or “proteochemometric models”, have
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been reviewed by Qiu et al. (2016) and more recently by Kimber
et al. (2021).

One common distinction between ML and DL models is that
the latter are usually based on a simpler representation and learn
descriptors directly from the data; this distinction is however
somewhat arbitrary and most DL models still require some pre-
processing to convert atom types and coordinates in the correct
format for the architecture being used. Here we briefly review
structure-based descriptors commonly employed with ML
algorithms as well as the input representation used in DL
architectures.

One common type of descriptor employed with ML models is
an interaction fingerprint (IFP). Structural interaction FPs (SIFts)
encode the 3D structure of a protein-ligand complex into a one-
dimensional binary vector (Deng et al., 2003). Seven different
interaction types involving the ligand and binding site residues
are identified and a FP for the whole protein-ligand complex is
obtained by concatenating the binding bit string of each binding
site residue. Simple ligand-receptor interaction descriptors
(SILIRID) are instead obtained from binary IFPs by summing
the bits corresponding to the same amino-acids (Chupakhin et al.,
2014), thus resulting in a FP with 168 elements (20 amino acids
and one cofactor, and 8 interaction types per amino acid). Da and
Kireev (2014) developed structural protein-ligand interaction
fingerprints (SPLIF), where protein-ligand atom pairs within
4.5 Å are identified and expanded into circular fragments
described by extended connectivity fingerprints (ECFPs)
(Rogers and Hahn 2010). In this way, protein-ligand
interactions are encoded implicitly instead of needing explicit
ad-hoc interaction classes and therefore can encode all local
interactions (Da and Kireev 2014). Similarly, Wójcikowski
et al. (2018) developed the protein-ligand extended
connectivity (PLEC) FP which combines the ECFP
environments of the protein and the ligand atoms in contact
to describe protein-ligand interactions. The atomic features
employed to construct PLEC FPs—atomic number, isotope,
number of neighboring heavy atoms, number of hydrogens,
formal charge, ring membership, and aromaticity—are the
same used to construct ECFP, but only pairs of interacting
atoms within 4.5 Å are considered. The FPs computed for
ligand and protein atoms are hashed together to a final bit
position (Wójcikowski et al., 2018). The PLEC FP
implementation is available as part of the Open Drug
Discovery Toolkit (Wójcikowski et al., 2015) and has been
successfully used in combination with different ML models for
binding affinity prediction (Wójcikowski et al., 2018). There are
several other IFPs such as APIF (Pérez-Nueno et al., 2009),
PADIF (Jasper et al., 2018), and PyLIF (Radifar et al., 2013).

Ballester et al. (2014) evaluated the impact of the choice of
chemical descriptors on ML scoring functions. They showed that
more complex descriptors do not necessarily lead to more
accurate scoring functions and they identify and discuss the
factors that might be contributing to this observation:
modelling assumptions, co-dependence of representation and
regression method, and data set features.

In structure-based methods, the goal is to exploit the 3D
information of protein-ligand complexes. One natural

representation of the 3D structure of protein-ligand complexes
is the electron density, which is used in X-ray crystallography to
model the structure of both the protein and the bound ligand. To
encode information about the nuclei available from resolved
structures, a representation that clearly encodes the spatial
relationship between the protein and the ligand are three-
dimensional (3D) grids which discretize volumetric data. The
voxel occupancy is often defined as the sum (or maximum) of
decaying density functions centered at the different atoms, while
atoms of different types are represented in different grids—which
can be thought of as a generalization of the RGB channels used in
2D images to represent the different colors. Different
representations have been proposed, but they are mostly based
on atom-centered density functions g(r; ti) centered at atom i of
type t whose contributions are aggregated together:

G r; t,R( ) � ⊕N
i
g ‖r − Ri‖; ti( )δti ,t. (6)

r represents the coordinates of the voxel, Ri represents the
coordinates of atom i, while δi,j is Kronecker delta so that only
atoms of type t contribute to G(r; t, R). ⊕ is an aggregation
function such as sum or maximum.

In Jiménez et al. (2018),

g r; t( ) � 1 − exp − Rt

r
( )12[ ] (7)

and the different channel represent hydrophobic, hydrogen-bond
donor/acceptor, aromatic, ionizable, metallic, and excluded
volume properties. Rt represents an atom type-dependent
characteristic length, often set to the van der Waals radius.
The properties are duplicated to represent protein and ligand
atoms in different channels, and the density for different atoms in
the same channel is aggregated by taking the maximum. In
Ragoza et al. (2017a) and subsequent publications (Sunseri
et al., 2018; Francoeur et al., 2020) the following functional
form is used:

g r; t( ) �
e−2r

2/R2
t 0≤ r<Rt,

4

e2R2
t

r2 − 12

e2Rt
r + 9

e2
Rt ≤ r< 1.5Rt,

0 r≥ 1.5Rt,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (8)

and the different channels represent the different atom types from
the SMINA docking software (Koes et al., 2013), resulting in 16
channels for the receptor and 18 channels for the ligand (Ragoza
et al., 2017a). Contributions from different atoms on the same
channel are summed together.

The advantage of using 3D grid representations is that they
encode clear spatial relationships between the different atom
types and the computation can be performed very efficiently
(Sunseri and Koes 2020) thus allowing on-the-fly data
augmentation during training. However, grid representations
have also several limitations. While computation of G(r; t) can
be performed very efficiently, their dependence on the coordinate
frame requires extensive data augmentation (Ragoza et al., 2017a)
at increased computational costs, and the sparsity of some
channels (such as the ones representing halogens or metals)
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implies wasteful computations. Additionally, the memory
footprint of grid-based representations increases with the
number of atom types. Despite the limitations, the close
connection to the field of computer vision has led to the
successful development of several SFs based on this
representation, as discussed below.

For graph-based models such as graph neural networks
(GNNs), descriptors are associated to atoms—the nodes of the
graph—and bonds—the edges of the graph. A node descriptor is a
vector containing information about the atom. An edge
descriptor is a vector describing the chemical bond—such as
the bond order. There are several descriptors employed in the
literature, and they depend on the task at hand. For protein-
ligand binding affinities, simple quantities related to an atom or a
bond are commonly employed since higher-level features are
learned by intermediate GNN layers (Feinberg et al., 2018). Such
simple features for the nodes can include one-hot-encoded
elements or atom types, formal charges, hybridization states,
aromaticity, and other atomic properties (Jiang et al., 2021).
Edge features can include both 2D and 3D information such
as bond order, conjugation, bond length, and other bond
properties (Jiang et al., 2021).

Descriptors commonly used inML/DL for quantum chemistry
have been successfully applied to the classification of active and
decoys against different protein families (Bartók et al., 2017).
Recently, the smooth overlap of atomic position (SOAP)
descriptor (Bartók et al., 2013)—which allows comparing
molecules across the structural and chemical space (De et al.,
2016)—have been used together with Gaussian processes models
to predict pIC50 values (McCorkindale et al., 2020). At the same
time, atomic environment vectors developed for the ANI family
of neural network potentials (Smith et al., 2017; Gao et al., 2020)
and based on Behler-Parrinello symmetry functions (Behler and
Parrinello 2007) have been used as descriptors of protein-ligand
complexes for binding affinity predictions (Meli et al., 2021).
Behler-Parrinello symmetry functions have also been employed
as node features in GNNs for binding affinity prediction (Karlov
et al., 2020) and inspired the atomic convolution architecture
from Gomes et al. (2017). Both descriptors are strongly related
(Musil et al., 2021) and provide a local descriptor of the structural
and chemical environment of atoms in a way that is
translationally and rotationally invariant.

Learned molecular representations also play an important role
as descriptors (Chuang et al., 2020; Menke and Koch 2021). The
characteristic of deep learning architecture is that useful and
efficient internal representations are learned directly from the
input data. Therefore, the fixed and ad-hoc descriptors or
fingerprints described above can be substituted with learned
representations. Yang et al. (2019) performed an extensive
analysis of learned molecular representation for property
predictions, showing that they achieve similar or better
performance than fixed descriptors. While many learned
representations for computational chemistry include only 2D
information, learned representation for three-dimensional
structures have been developed (Kuzminykh et al., 2018) but
their application in structure-based drug discovery is still under-
explored. The interest in DL architectures is that they can leverage

the simple inputs described above (such as 3D atomic densities or
coordinates and atom types) to automatically learn internally
complex representations that can be used for molecular property
prediction.

Some authors extracted descriptors from molecular dynamics
(MD) trajectories, instead of using the crystal structure or docked
poses, although the use of trajectory data remains rare (Wang and
Riniker 2020). Yakovenko and Jones (2017) use atomic densities
but trained their model on both docked poses and MD trajectory
frames to obtain learned representations later used to predict LIE.
Berishvili et al. (2019) developed 1D descriptors based on
GROMACS (Berendsen et al., 1995; Abraham et al., 2015),
AutoDock Vina (Trott and Olson 2009), and SMINA (Koes
et al., 2013) terms to describe frames from MD trajectories.
The descriptor for each frame where stacked together into a
matrix of size ndescriptor × nframes, representing the whole MD
trajectory.

A more in-depth overview of featurization strategies for
protein-ligand interactions that are commonly employed in
the development of ML and DL SFs is given by Xiong et al.
(2021), while an overview of common molecular representations
used in AI-driven drug discovery is provided by David et al.
(2020).

4.2 Overview of Classical Machine Learning
Scoring Functions
Classical ML algorithms such as SVMs and RFs have been used in
quantitative structure-activity relationship (QSAR) modelling
and in the development of structure-based scoring functions
for a while (Ain et al., 2015; Muratov et al., 2020).

One of the earliest ML SFs for binding affinity predictions has
been developed by Deng et al. (2004). The model combines
protein-ligand atom pair occurrence and distance-dependent
atom pair features with a kernel partial least squares method
(K-PLS) (Rännar et al., 1994, Rännar et al., 1995) to predict pKd,
demonstrating that structure-based descriptors combined with
ML regression can be effective for protein-ligand binding affinity
prediction on different complexes. Das et al. (2010) introduced
property-encoded shape distribution signatures—descriptors
encoding molecular shapes and property distributions on
protein and ligand surfaces—which were used in combination
with SVM to build a regression model. SVM-based regression was
also used by Li et al. (2011) to develop two SFs, one based on
knowledge-based potentials (SVR-KB) and another based on
physicochemical properties of the protein-ligand complex
(SVR-EP). Both SFs show very good performance on the
CASF benchmark when compared to classical SFs.

RF models have been quite successful in the development of
structure-based ML SFs. Ballester and Mitchell (2010) introduced
a novel SF based on RF, called RF-Score. Protein-ligand
complexes are described by a 36-dimensional feature vector
storing the occurrence count of different protein-ligand atom
pairs within a cutoff of 12 Å. The feature vector is used as input of
a RF regression model predicting the binding affinity. Thanks to
the use of the PDBbind benchmark (Cheng et al., 2009), RF-Score
could be easily compared to 16 other SFs, showing that RF-Score
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is a very competitive scoring function. SFCScoreRF improved the
performance of RF-Score by using a different and larger feature
vector including ligand-based features (such as the number of
rotatable bonds) and interaction-specific descriptors (Zilian and
Sotriffer 2013).

Gradient boosting (Mason et al., 1999; Friedman 2002)—often
combined with decision trees—is another popular ML technique
used in the development of SFs, also thanks to the availability of
high-quality open-source implementations such as XGBoost
(Chen and Guestrin 2016) and LightGBM (Ke et al., 2017).
Notable scoring functions based on gradient boosting are
XGB-Score (Li et al., 2019b), AGL-Score (Nguyen and Wei
2019), and OPRC-GBT (Wee and Xia 2021). Shen et al.
(2021) recently developed several XGBoost-based classifiers to
assess the impact of cross-docked poses on the performance on
pose-prediction, highlighting the importance of cross-docked
poses for training of ML SFs with a broad applicability
domain and increased robustness for pose-prediction.

Instead of learning the experimental protein-ligand binding
affinity directly, Wang and Zhang (2016), used a RF model
learning to correct the AutoDock Vina scoring function (Trott
and Olson 2009), which represent a reasonable
baseline—especially for docking and virtual screening. The
resulting scoring function, called ΔVinaRF, retains the very
good scoring performance of other ML SFs on scoring and
ranking while also working well for docking and virtual
screening. ΔVinaRF showed great performance in the CASF-
2016 benchmark (with a Pearson’s r of 0.82 in the scoring
task), but this superior performance can be partially attributed
to the overlap between the training set and the CASF-2016 test set
(Su et al., 2018).

ML-based scoring functions are still under active development
both in terms of methodology and training data. For example,
Boyles et al. (2019) showed that including ligand features
obtained with RDKit into structure-based ML scoring
functions consistently improves the performance in protein-
ligand binding affinity prediction. Combining features from
RF-Score (v3) with RDKit molecular descriptors improves
Pearson’s correlation for the CASF-2016 scoring benchmark
from 0.79 to 0.84 (Boyles et al., 2019). Another example of
recently developed scoring function using classical machine
learning regression models for binding affinity prediction is
RASPD+ (Holderbach et al., 2020).

Several other classical machine learning algorithms such as
kernel ridge regression, Gaussian processes (Williams and
Rasmussen 1996; Rasmussen 2003), and other methods have
been used in the development of structure-based scoring
functions but they are not the focus of this review. The
interested reader can consult Ain et al. (2015) and (Li H.
et al., 2020) for a more in-depth review of machine learning
scoring functions.

4.3 Feed-Forward Neural Networks
Feed-forward neural networks (also known as multilayer
perceptrons (MLPs), fully-connected neural networks, artificial
neural networks (ANNs), or simply neural networks (NNs))
consist in a series of linear layers combined with point-wise

non-linearities called activation functions (Bishop 2006).
Originally, feed-forward neural networks were inspired by the
way neurons in the brain work (McCulloch and Pitts 1943;
Widrow and Hoff 1960; Rosenblatt 1962).

The basic unit of a neural network is a “neuron” (perceptron,
or node) and the neurons in a neural network are clustered in
different layers that are stacked. The neuron j in layer k takes an
input vector x ∈ RN returns an output

z k( )
j � g ∑N

i

w k( )
ji xi + b k( )

j
⎛⎝ ⎞⎠, (9)

where w(k)
ji (weights) and b(k)j (biases) for neuron j in layer k are

learnable parameters to be determined during training and where
g(·) is a non-linear function, called activation function. Neural
networks are very expressive and can be regarded as universal
approximators (Hornik et al., 1989), provided a large enough
number of hidden neurons and some classes of activation
functions (Bishop 2006).

Initially, neural networks were composed only of a small
number of neurons with a single (hidden) layer between the
input layer and the output layer but thanks to the development of
algorithms able to train neural networks with multiple layers in a
simple and efficient way (Rumelhart et al., 1986) neural networks
became deeper and deeper (now called deep neural networks,
DNNs) by staking together multiple hidden layers.

The use of simple and deep NNs for the determination of
quantitative structure-activity relationships (QSAR) is not new
(Salt et al., 1992; Dahl et al., 2014; Ma et al., 2015). One of the first
use of NNs in binding affinity prediction was published by
Artemenko (2008), where a subset of physicochemical
descriptors and quasi-fragmental descriptors—describing
pairwise statistics of interatomic distances—were selected using
multiple linear regression and used as input of a feed-forward
NN. NNs have been also successfully used for classification of
actives and decoys. Durrant andMcCammon (2010) introduced a
NN-based SF—NNScore—to distinguish between well and
poorly docked ligands as well as actives from decoys. NNScore
was later extended to regression of binding affinities in NNScore
2.0 (Durrant and McCammon 2011b) thus providing a direct
estimation of pKd. NNScore 2.0 uses terms from the Vina scoring
function (Trott and Olson 2009)—to encode steric, hydrophobic,
and hydrogen-bonding interactions–as well as BINANA features
(Durrant and McCammon 2011a) as input and returns a estimate
of pKd as output.

Ashtawy andMahapatra (2015) used a collection of NNs whose
predictions are combined with the bagging (Breiman 1996)—
bootstrap aggregation—or boosting (Freund and Schapire 1997;
Friedman 2002) ensemble methods. The input features were
obtained as a combination of classical scoring functions terms,
together with features from RF-Score. Their BgN-Score and BsN-
Score SFs perform significantly better on the PDBbind core set 2007
than classical SF and surpass SFs based on RFs.

Wójcikowski et al. (2018) showed that a MLP combined with
their PLEC fingerprint can achieve very good performance on the
CASF-2016 benchmark. However, they also show that the PLEC
FPs perform equally well when using a simpler linear model
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instead of a neural network, confirming that well-crafted
descriptors can be extremely powerful.

More recently, Zhu et al. (2020) developed a model for pKd

prediction where pairwise contributions are computed with a
fully connected NN. Trained on the PDBbind 2018, they achieve a
Pearson’s correlation coefficient of 0.75 and a RMSE of 1.44 on
the CASF-2016 benchmark but the authors point out that there is
a significant overlap between the test and training sets which
might be boosting the performance of their model. Meli et al.
(2021) used a collection of MLPs combined with a local
representation of the atomic environment to predict protein-
ligand binding affinities, reaching good performance on the
CASF-2016 benchmark.

4.4 Convolutional Neural Networks
Convolutional neural networks (Fukushima 1980; Le Cun et al.,
1989; Lecun et al., 1998; Krizhevsky et al., 2017) are a class of
neural networks that tries to overcome some of the limitations of
feed-forward neural networks, by using convolution operations
instead of matrix multiplication in some of their layers
(Goodfellow et al., 2016). Feed-forward neural networks use a
one-dimensional vector as input which prevents the encoding of
spatial relationships, and uses many parameters. CNNs are based
on three main concepts (Bishop 2006): local receptive fields
(inspired by the structure of the visual cortex (Hubel 1959;
Hubel and Wiesel 1959)), weight sharing, and subsampling.

Local receptive fields are implemented in convolutional layers,
where neurons in a layer do not receive the output of all neurons
in the previous layer (as in fully-connected NNs) but only the
ones in their local receptive field (Géron 2019). For two-
dimensional grid-based inputs (such as images), the output of
neuron at location (i, j) of feature map k of the convolutional layer
l is given by (Géron 2019)

z l( )
i,j,k � b l( )

k +∑f l( )
h

u�1
∑f l( )
w

v�1
∑f l−1( )
n

k l−1( )�1
xi l−1( ) ,j l−1( ) ,k l−1( ) · w l( )

u,v,k l−1( ) ,k, (10)

with

i l−1( ) � us l( )
h + f l( )

h − 1,
j l−1( ) � us l( )

w + f l( )
w − 1.

{ (11)

fh and fw are the height and the width of the receptive field (i.e. the
size of the 2D convolutional kernel) while sh and sw represent the
strides (i.e. the size of the displacement of the receptive field).
f(l−1)
n denotes the number of feature maps in the previous layer

(l − 1). blk is a bias term associated to feature map k while w(l)
u,v,k′,k

denotes the weight term associated to the connection between the
input located at (u, v) in feature map k(l−1) (relative to the
neuron’s receptive field) and the neuron in feature map k of
layer l. Both blk and w(l)

u,v,k′,k are learnable parameters to be
determined during training. For clear depictions of the main
building blocks of 2D CNNs we refer the reader to Dumoulin and
Visin (2016).

Parameter sharing in a convolutional network comes from the
fact that each weightw(l)

u,v,k′,k of the kernel is used at every position
of the input, avoiding the need to learn a parameter for each input
element as it is the case in MLPs. Parameter sharing does not

reduce the computational complexity of the forward pass, but
significantly reduces the number of parameters in the network
(when the size of the convolutional kernel is much smaller than
the size of the input) and therefore the associated memory
footprint (Goodfellow et al., 2016).

Pooling layers—such as maximum pooling (Zhou et al., 1988),
and average pooling—are often inserted after (activated)
convolutional layers to make the representation approximately
invariant to small translations (Goodfellow et al., 2016).
Additionally, they reduce the size of the input of the next
layer thus increasing the computational efficiency of the CNN,
and are essential for dealing with inputs of varying size
(Goodfellow et al., 2016).

Convolutional neural networks have been very successfully
applied to different tasks in computer vision such as image
classification (Krizhevsky et al., 2017) in the ImageNet
challenge (Deng et al., 2009; Russakovsky et al., 2015).

Wallach et al. (2015) introduced a structure-based deep
convolutional network for bioactivity prediction
(classification into two activity classes) of small drug-like
molecules against a target of interest. In their architecture,
denoted AtomNet, the protein-ligand binding site was
converted into a 3D grid (20 Å per side at 1 Å resolution)
containing values related to structural features such as the
number of atom types or protein-ligand descriptors such as
SPLIF (Da and Kireev 2014), SIFt (Deng et al., 2003), or APIF
(Pérez-Nueno et al., 2009). They showed improved performance
in the ROC-AUC compared to their baseline, provided by the
SMINA docking software (Koes et al., 2013). Ragoza et al. (2017a)
introduced a similar approach to distinguish good (low RMSD)
from bad (high RMSD) docking poses using CNNs based on an
atomic density representation of the binding site (see Eq. 8).
This approach was later extended to include binding affinity
predictions in a multitask learning framework (Sunseri et al.,
2018)—both the binding affinity and the pose quality are
predicted at the same time—and it was shown to provide a
good correlation between experimental and predicted binding
affinities for the CASF-2016 benchmark (Francoeur et al., 2020).
The various pre-trained CNN scoring functions are integrated
and readily available in the GNINA docking software (McNutt
et al., 2021). Jiménez et al. (2018) took a similar approach—with
a slightly different density representation, first introduced in
DeepSite Jiménez et al. (2017)—for binding affinity prediction
with their Kdeep architecture and they achieved a very good
correlation and low RMSE on the CASF-2016 benchmark.
Interestingly, they analyzed the accuracy separately for the 58
different target classes of the CASF-2016 benchmark, revealing
that accuracy is very sensitive to the specific protein used.
Indeed, protein family-specific CNN models have been
developed for virtual screening using a transfer-learning
approach (Imrie et al., 2018).

Many other architectures for binding affinity predictions
based on CNNs have been developed in recent years. Notable
examples are Pafnucy (Stepniewska-Dziubinska et al., 2018),
DeepAtom (Li Y. et al., 2019), OnionNet (Zheng et al., 2019;
Wang S. et al., 2021) and OnionNet-2 (Wang Z. et al., 2021), and
RoseNet (Hassan-Harrirou et al., 2020).
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Pafnucy discretizes the binding site on a three-dimensional
grid of 20 Å in side at 1 Å resolution and employs a set of 19
features including one-hot encoding of atom types (including
selenium, halogens, and metals), hybridization state, number of
bonds with heavy atoms, number of bonds with heteroatoms and
a flag distinguishing protein and ligand atoms. DeepAtom uses a
grid of 1 Å resolution to voxelize the binding site, with the same
density representation of Jiménez et al. (2018) and using
Arpeggio atom types (Jubb et al., 2017), but the architecture is
inspired from ShuffleNet V2 (Ma et al., 2018). OnionNet (Zheng
et al., 2019) also uses a deep convolutional neural network but the
input features are based on intermolecular element-pair-specific
contacts between ligand and protein atoms, which are grouped in
different distance shells. Each shell is described by 64 features
representing the intermolecular interactions—within the shell
boundaries—between the protein and ligand for eight atoms
types considered, and a total of 60 shells (of thickness 0.5 Å)
is employed (Zheng et al., 2019). This idea was later extended in
OnionNet-2 (Wang Z. et al., 2021), which uses protein residues
types instead of protein atom types (increasing the number of
features from 64 to 8 × 21 = 168). RoseNet (Hassan-Harrirou
et al., 2020) uses an ensemble of CNNs—based on the ResNet
architecture (He et al., 2016)—combining molecular mechanics
energies from the Rosetta force field (Alford et al., 2017) voxelized
onto a 3D grid (25 Å each side, at 1 Å resolution) and molecular
descriptors—using an approach similar to Kdeep with descriptors
from AutoDock Vina (Trott and Olson 2009)—to predict
absolute binding affinities.

CNNs can also be employed with lower-dimensional
descriptors. For example, TopologyNet (Cang and Wei 2017)
encodes the three-dimensional protein-ligand complex structure
into one-dimensional element-specific fingerprints based on
topological invariants. Such element-specific topological
fingerprints, stacked together over multiple channels—like a
one-dimensional image representation—are then used as input
of a CNN, and achieve good performance on the CASF-2016
benchmark. The work was later extended to explore additional
algebraic topology approaches (Cang et al., 2018).

CNNs have also been successfully applied to the related task of
pose prediction. The CNN developed by Ragoza et al. (2017a) has
been developed initially for pose prediction, and it was extended
to binding affinity prediction on a later stage (Francoeur et al.,
2020). Other notable examples are DeepBSP (Bao et al., 2021),
which uses a 3D voxel representation of protein-ligand complexes
to predict the RMSD between a docked ligand and its native
pose—an idea previously explored by Aggarwal and Koes
(2020)—and MedusaNet (Jiang H. et al., 2020), which uses
CNNs to predict if a pose generated by docking is a good pose
to stop the docking process earlier when k good poses are found
thus reducing computational costs.

The application of CNNs in the prediction of protein-ligand
binding affinities has been quite successful, as demonstrated by
the methods discussed above. However, while CNNs are
translational invariant they are not rotationally invariant and
therefore require extensive data augmentation where the protein-
ligand complex is randomly rotated before computing its
associated grid representation. Data augmentation with CNNs

has proven to be essential to prevent overfitting in pose prediction
(Ragoza et al., 2017a), and the average over multiple random
rotations can be used during inference thus reducing the variance
of the predictions (Jiménez et al., 2018). Many concepts from
geometric deep learning (Atz et al., 2021; Bronstein et al., 2021),
such as CNNs that are equivariant to rigid body motions (Weiler
et al., 2018), will spill more and more into the field of protein-
ligand binding affinity prediction as well as virtual screening to
overcome some of the limitations of standard CNNs by encoding
relevant symmetries directly into the model.

4.5 Graph Neural Networks
Graph neural networks (GNNs) are a collection of DL
architectures to work with data that can be represented as a
graph (Bronstein et al., 2021). The vast majority of GNNs falls
under three categories (Bronstein et al., 2021): convolutional
(Defferrard et al., 2016; Kipf and Welling 2016), attentional
(Monti et al., 2017; Veličković et al., 2017; Zhang et al., 2018),
and message-passing (Gilmer et al., 2017; Battaglia et al., 2018). A
graph G(V, E) is composed of a set of vertices vi ∈ V and a set of
edges eij ∈ E connecting the vertices. Features x are associated to
vertices (and, optionally, edges) and such features are
subsequently updated as follows:

hu � ϕ xu, ⊕
v∈N u

ψ xu, xv( )( ) (12)

where ϕ and ψ are learnable functions (often learnable affine
transformations with activation functions (Bronstein et al., 2021))
and where ⊕ represents a permutation-invariant function
allowing the aggregation of features (such as sum, mean, and
maximum (Bronstein et al., 2021)) over the neighborhoodN u of
node u. ψ is a message-passing function (which can be generalized
to include edge features as well), while ϕ is a vertex update
function. It is possible to learn edge features as well by
introducing a hidden representation huv for the edges (Kearnes
et al., 2016; Gilmer et al., 2017).

Since molecules can be naturally represented as graphs—with
nodes in the graphs representing different atoms and edges in the
graph representing the chemical bonds between such
atoms—GNNs are well suited to be applied in the field of
chemistry (Atz et al., 2021). Message-passing GNNs, which are
the most general flavor, have been successfully applied in
quantum chemistry applications (Schütt et al., 2018; Qiao
et al., 2020; Schäfer et al., 2020; Christensen et al., 2021).
GNNs have also been applied to several molecular property
predictions (Gaudelet et al., 2021), including bioactivity and
protein-ligand binding affinity.

Gomes et al. (2017), inspired by the work of Behler and
Parrinello (2007), developed an atom type convolution that
uses a neighbor-listed distance matrix to automatically extract
features about local chemical environments and combine this
information with radial pooling to downsample the output of the
atom type convolution. Essentially, the atom type convolution
performs a graph convolution on the nearest neighbors graph in
three-dimensional space. The resulting features are then passed to
a collection of fully connected layers (all with the same weights
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and biases) to predict atomic contributions to the energy, which
are summed together to obtain the total Gibbs free energy. To
predict the binding free energy, three weight-sharing networks
are used (one each for Gcomplex, Gprotein and Gligand) and the
results are then combined as

ΔGcomplex � Gcomplex − Gprotein − Gligand (13)
so that the whole architecture directly incorporates the
thermodynamic cycle.

In PotentialNet (Feinberg et al., 2018) the node updates are of
the form

h k( )
u � GRU h k−1( )

u ,∑Net

e

∑
v∈N e ]i( )

NNe h k−1( )
v( )⎛⎝ ⎞⎠ (14)

where GRU is a gated recurrent unit (Hochreiter and
Schmidhuber 1997; Cho et al., 2014; Chung et al., 2014), NNe

is a trainable NN for edge type e, and N e(]i) denotes the
neighbors of edge type e for atom i. Several updates are
concatenated into different stages: in the first stage
information is propagated only between nodes linked by a
covalent bond, in the second stage information is propagated
between non-covalent and covalent bonds and finally, everything
is aggregated by a ligand-based graph gather. The first step
essentially produces learned (bond-based) atom types, while
the second step includes both bond and spatial information
between the atoms (Feinberg et al., 2018). In stage three, all
learned features for the ligand atoms are summed together and
the resulting vector is used as input of a fully-connected neural
network to produce the final prediction.

The graphDelta architecture uses a graph-based
representation for the ligand and incorporates information
about the target in the node features (Karlov et al., 2020). The
node features represent radial and angular Behler-Parrinello
atom centered symmetry functions (ACSFs) (Behler and
Parrinello 2007), combined with a message-passing neural
network. With enough training epochs, they achieve a
Pearson’s correlation coefficient of 0.87 and a RMSE of 1.05 in
the CASF-2016 benchmark for binding affinity prediction.

Li et al. (2021) developed a structure-aware interactive GNN
which combines polar coordinate-inspired graph attention layers
and pairwise interactive pooling. The graph attention layers
leverage distances between nodes and angles between edges to
iteratively update node and edge embeddings while preserving
distance and angle information among atoms. The pairwise
atomic type-aware pooling layer is then used to gather
interactive edges to capture long-range interactions. Their
model, called SIGN, achieves good results on the CASF-2016
benchmark for binding affinity prediction as well as the CSAR-
NRC HiQ set.

Son and Kim (2021) developed GraphBAR, where a graph is
constructed from all ligand atoms and protein atoms within 4 Å
from the ligand (limited to a maximum of 200 nodes, with zero-
padding of the adjacency matrix for smaller graphs). Node
features consist of one-hot encoded atom types, atom
hybridization states, number of neighboring atoms (heavy

atoms and heteroatoms), and well as partial charges, stored
in a 200, ×, 13 feature matrix. Multiple binary adjacency
matrices are used to encode different interaction shells with
fixed distance intervals. A graph convolution block is applied to
each adjacency matrix together with the feature matrix pre-
processed by a fully-connected layer. The outputs of the graph
convolutional blocks are concatenated and a fully connected
layer produces the final prediction. The model shows similar
performance to Pafnucy (Stepniewska-Dziubinska et al., 2018),
but the training time appears to be considerably shorter (Son
and Kim 2021).

Jiang et al. (2021) developed InteractionGraphNet, where two
independent graph convolution modules are stacked to
sequentially learn intramolecular and intermolecular
interactions using three molecular graphs (one for the ligand,
one for the protein, and one for the protein-ligand complex). The
protein-ligand bipartite graph is built using protein and ligand
atoms within 8 Å of each other. At first, a series of message
passing iterations is employed to update the node features in the
protein and ligand graphs. Then, these learned node features are
used as initial node features for the protein-ligand graph on
which edge features representing non-covalent interactions are
updated. The learned edge features on the protein-ligand graph,
representing the non-covalent interactions between the protein
and the ligand, are finally pooled together and used for
downstream prediction tasks: binding affinity prediction,
virtual screening and pose prediction. For binding affinity
prediction, InteractionGraphNet shows good results on the
CASF-2016 benchmark, although several systems were
removed from the test set.

Moesser et al. (2022) recently developed a simple but effective
way to include protein-ligand interactions into ligand-based
graphs. Their protein-ligand interaction graphs (PLIGs)
representation featurize an atom node in the molecular graph
by including both atom properties and atom-atom contacts with
protein atoms. Combined with the GAT architecture (Veličković
et al., 2017), their model reaches a very good performance on the
CASF-2016 benchmark.

Moon et al. (2022) used GNNs in a very interesting way.
Instead of using standard and general architectures, Moon et al.
(2022) included parametrized physics-based equations in the
model architecture, to incorporate the appropriate inductive
bias with the goal of improving model generalization by
forcing the model to learn the underlying chemical
interactions. A GNN is used to update node features across
covalent bonds and intermolecular interactions, which are
then used—together with pairwise distances—as input of
physics-based parametrized equations describing
intermolecular interactions as well as entropy loss. The
parameters of the physics-informed equations are learned
during training and contribute to model generalization.

GNNs have been also successfully applied for structure-based
virtual screening (classification of actives and decoys) as well as
pose prediction (classification of binding poses), as demonstrated
by Lim et al. (2019), Morrone et al. (2020), and Stafford et al.
(2022). The use of GNNs—and, more generally, geometric deep
learning—in drug discovery and drug development is a very
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active area of research and a recent overview on several different
applications beyond the narrow scope of this review is given by
Gaudelet et al. (2021).

4.6 Other Methods
Above we briefly described widely used families of deep learning
architectures—MLPs, CNNs, and GNNs—and their application
on the development of structure-based scoring functions. One
important omission is recurrent neural networks (RNNs)
(Rumelhart et al., 1986; Hochreiter and Schmidhuber 1997;
Graves 2012), which are suited to learn from sequential data
(such as language or time series). RNNs are also applied to
protein-ligand binding affinity prediction (Karimi et al., 2019)
but they usually employ unrelated representation for the protein
(often the sequence of amino acids) and the ligand (SMILES
strings or related representations). As mentioned above,
proteochemometric or pair models (Lenselink et al., 2017;
Feng et al., 2018; Öztürk et al., 2018; Shin et al., 2019; Jiang
M. et al., 2020; Nguyen et al., 2020; Yang et al., 2022) are outside
the scope of this review and the reader can find more information
in Kimber et al. (2021).

Similarly to proteochemometric models, which combine
different—often learned—representations for the protein and
the ligand, protein-ligand binding affinity predictions can also
benefit from the use of complementary representations of the
complex. Jones et al. (2021) combine learned representations of
the protein-ligand complex obtained with CNNs and GNNs
using mid-level or late deep fusion (Roitberg et al., 2019).

Seo et al. (2021) recently developed BAPA, an architecture
based on 1D CNNs combined with an attention layer. The
protein-ligand complex is encoded into a 1D descriptor of
contacts between the protein and ligand atoms and processed
using a 1D CNN to obtain learned features, which are then
concatenated with terms from the AutoDock Vina scoring
function. The learned features are then encoded into a latent
representation using a MLP. The encoded vector is then passed to
an attention layer. As described by Chen et al. (2018), an attention
layer computes a weighted sum of input values, where the weights
are determined based on the relevance of the different input
components. In BAPA, the goal of the attention layer is to extract
the components of the input important for binding affinity
prediction in a context vector. The encoded and context
vectors are then concatenated an used by an MLP to obtain
the final prediction. Wang Y. et al. (2021) also used self-attention
in their PointTransformer architecture. The use of the attention
mechanism (Bahdanau et al., 2014; Luong et al., 2015) in binding
affinity prediction is also found in proteochemometric models
(Karimi et al., 2019; Zhao et al., 2019).

A totally different approach from the data-driven ones
reviewed above is to use physics-based methods for the
computation of binding free energies accelerated or improved
using ML and DL. Thanks to the recent developments in ML
force fields (Unke et al., 2021), accurate alchemical free energy
calculations based on such force fields are starting to appear (Rufa
et al., 2020; Wieder et al., 2021). ML-based corrections to
conventional free energy calculations will also play an
important role in reaching good prediction accuracy of

protein-ligand binding free energies (Dong et al., 2021). While
such methods are outside the scope of this review, we believe the
exploration and development of ML and DL methods in the field
of free energy calculations will provide very interesting outcomes
in the coming years, by getting the methodology closer to
chemical accuracy while significantly reducing
computational costs.

5 TRAINING AND EVALUATION

5.1 Back-Propagation, Regularization and
Transfer Learning
Deep learning architectures for supervised learning are usually
trained with gradient-based optimisation of a loss (or cost, or
error) function that represents some measure of the prediction
error (such as the mean squared difference between predicted and
expected values). The weights and biases (trainable or learnable
parameters) of the model are initialized from a random
distribution or in a data-driven fashion (Narkhede et al.,
2021), and they are iteratively adjusted by gradient-based
optimisation techniques (such as stochastic gradient descent
(Bottou et al., 1998)) to minimize a loss function.

Rumelhart et al. (1986) developed an algorithm called
backpropagation, which allows computing the gradient of the
loss function with respect to the parameters of the model (weights
and biases) in an automated and efficient way. The algorithm
consists of a forward pass computing the output of each
component of the neural network, and the final output is used
to evaluate the loss function. Then, the error is propagated
backward using the chain rule of calculus to compute the
gradients of the loss function with respect to each parameter
of the network. The backpropagation algorithm is explained in
detail in Goodfellow et al. (2016).

Modern deep learning frameworks such as PyTorch (Paszke
et al., 2019; Li S. et al., 2020) and TensorFlow (Yu et al., 2018)
usually require one to define only the forward pass, and gradients
of the loss function can be easily and automatically computed
with respect to any parameter. The availability of open-source,
well-designed, and easy-to-use deep learning frameworks
certainly contributed to the increased application of DL in
different areas of research, including drug discovery.

Given the large number of parameters, DL architectures are
often subject to the pitfalls of overfitting. To prevent overfitting,
several techniques are commonly employed such as early
stopping (Caruana et al., 2001), and the use of dropout layers
(Srivastava et al., 2014).

Oftentimes, especially in the field of drug discovery, there is
interest in models that are not completely generalizable but work
well in specific cases such as specific protein families. Once a
model has been trained on a general data set, it is possible to fine-
tune the learned parameters to improve performance for specific
tasks. Transfer learning (Bozinovski and Fulgosi 1976) methods
can be subdivided in four classes (Pan and Yang 2010): instance-
based, feature-based, parameter-based, and relation-based. Deep
transfer learning, the combination of transfer learning and deep
learning architectures (Tan et al., 2018), is commonly exploited in
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drug discovery applications where learned representations are
employed in different tasks (feature-based transfer learning) or
where pre-trained models are fine-tuned for specific tasks
(parameter-based transfer learning). The latter technique has
been used successfully to develop protein family-specific
models for virtual screening (Imrie et al., 2018), for example.
An overview of transfer learning in drug discovery is given by Cai
et al. (2020).

Multitask learning, which is closely related to transfer learning,
consists in learning multiple endpoints at the same time using a
shared representation (Ramsundar et al., 2017). Multitask
learning can be used for the development of ML and DL SFs
for both pose prediction (docking) and binding affinity prediction
(scoring) (Ashtawy and Mahapatra 2017; Francoeur et al., 2020).

5.2 Evaluation
The models for protein-ligand binding affinity prediction
discussed above consist of regression models, which given a
protein-ligand complex as input return a real-valued estimate
of the binding affinity (usually pKd, pKi, or pIC50).

In the CASF benchmark, arguably one of the most used
benchmarks for the development of scoring functions, the
scoring power of a scoring function is measured in terms of
correlation between experimental and predicted values. This
correlation is measured quantitatively using Pearson’s
correlation coefficient r, defined as

r � ∑i xi − �x( ) yi − �y( )����������∑i xi − �x( )2
√ ����������∑i yi − �y( )2√ , (15)

where (xi, yi) are the predicted and experimental values of the
binding affinity, while �x and �y are the corresponding averages on
the whole data set. A Pearson’s r of 1.0 indicates perfect
correlation, while a Pearson’s r of 0.0 indicates no correlation.
The Pearson’s correlation coefficient is often accompanied by the
root mean squared error

RMSE �

�������������
1
N

∑N
i

xi − yi( )2√√
, (16)

or the mean absolute error (MAE)

MAE � 1
N

∑N
i

|xi − yi|, (17)

where N is the total number of samples in the test set.
The predicted value of the protein-ligand binding affinity can

also be used to rank compounds, usually against the same target.
Common metrics to evaluate the ranking power of a scoring
function are rank correlation coefficients such as Spearman’s ρ
(Spearman 2010) and Kendall’s τ (Kendall 1938). The Spearman’s
rank correlation coefficient is defined as (Spearman 2010)

ρ � ∑i rxi − rx
–( ) ryi − ry

–( )�����������∑i rxi − rx
–( )2√ �����������∑i ryi − ry

–( )2√ , (18)

which is similar to Pearson’s r but uses the predicted and
experimental ranks (rxi, ryi)—and the corresponding sample
averages—instead of using directly the predicted and
experimental values (xi, yi). The other difference is that the
Pearson’s correlation coefficient is usually computed on the
whole data set, while the Spearman’s rank correlation coefficient
(and other rank correlation coefficients) are often disaggregated by
target. This is the case for the CASF benchmarks, for example (Su
et al., 2018). Another way to quantify the ranking power of a
scoring function is the predictive index (PI) introduced by
Pearlman and Charifson (2001) and defined as

PI � ∑i∑j>iWijCij∑i∑j>iWij
(19)

where Wij = |yi − yj| is the absolute difference between the
experimental binding data of ligands i and j and where Cij is
defined as (Pearlman and Charifson 2001)

Cij �

1 if
yj − yi

xj − xi
< 0,

−1 if
yj − yi

xj − xi
> 0,

0 if xj − xi � 0.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (20)

The weights Wij reflect the fact that ranking incorrectly
compounds with similar experimental binding affinities is less
detrimental than ranking incorrectly compounds with vastly
different binding affinities. As for Spearman’s and Kendall’s
rank correlation coefficients, the PI is bound on the interval [
− 1, 1] (with 0 indicating random predictions).

Confidence intervals for the correlation coefficients described
above can be computed using bootstrapping (Efron, 1992). For
the CASF-2016 benchmark this is easily done with the provided
analysis scripts (Su et al., 2018). The very important topics of
calculation of confidence intervals and comparison of different
models are discussed at length in Nicholls (2014) and Nicholls
(2016) and while we are concerned with regression models in this
review, we point the reader interested in the comparison of
classification models to Patrick Walters (2021).

Given that the gradient-based training described above
depends on the initialization of the parameters of the model,
oftentimes multiple models are trained starting from different
weights and using different seeds for the random number
generator (used for random weight initialization, random
shuffling of examples, . . .), and the final prediction consists on
a combination of the results of the different models (often an
average). This ensemble approach has been shown multiple times
to improve predictions of machine learning and deep learning
models (Hansen and Salamon 1990; Ashtawy and Mahapatra
2015; Ericksen et al., 2017; Francoeur et al., 2020; Kwon et al.,
2020; Meli et al., 2021). More generally, a consensus score
amongst multiple models (also with different architectures)
can be used as well (Druchok et al., 2021), and the average
between different models (different architectures and/or different
training data sets) has been shown to improve pose predictions
with CNN scoring functions (McNutt et al., 2021). While the
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average across different models is often used to estimate the
performance of the ensemble, the standard deviation across
predictions gives information about their stability and can be
used as a diagnostic tool. Low standard deviations are expected
within the domain of applicability of the models, while large
standard deviations are often a symptom of poor generalizability.

Consensus scoring is not a new idea applicable only to
machine learning and deep learning models; several flavors of
consensus scoring have been successfully applied in combining
different classical docking scoring functions for a long time
(Charifson et al., 1999; Wang and Wang 2001; Clark et al.,
2002). It is now commonly applied in ML and DL scoring
functions to improve prediction performance.

Uncertainty quantification is an important field of machine
learning and deep learning research and applications in drug
discovery are a very active area of research. Some uncertainty
quantification methods such as Monte Carlo dropout (Gal and
Ghahramani 2016) remain under explored. Recently, evidential
deep learning (Amini et al., 2020) has been applied to uncertainty
quantification in DL-based QSAR (Soleimany et al., 2021).
Soleimany et al. (2021) show that evidential deep learning
allows to obtain predictions where uncertainty correlates with
error and that uncertainty can be employed to perform sample-
efficient training. Given the flexibility and scalability of the
approach, which can be easily incorporated into existing
architectures, this approach might contribute to the
development of SFs in the near future.

5.3 Cross-Validation and Data Splitting
Very important aspects to consider when training and evaluating
a new model are the size of the training set, the overlap between
training and test sets, and the data set bias. These aspects need to
be carefully evaluated, to properly assess the performance and
generalizability of a new model.

The size of the training set affects the performance of ML and
DL models and several authors noticed that including more
examples in the training set—even of a lower quality, such as
lower-resolution structures—improves model performance (Li
et al., 2015; Francoeur et al., 2020). Learning curves, which show
the prediction error as a function of the number of training
examples, are commonly employed to evaluate and compare ML
and DL methods in molecular properties prediction but they
remain somewhat uncommon in the evaluation of structure-
based models for binding affinity prediction, probably because of
the much smaller size of the data sets available for training and
evaluation.

The similarity between training and test sets has also a very
high impact on the performance of structure-based models
(Kramer and Gedeck 2010; Li and Yang 2017) and a careful
model evaluation needs to take this similarity into account to
avoid artificially inflated performance. Li and Yang (2017)
studied the impact on ML SFs of protein structural and
sequence similarity between the training and test. In their
study, they remove training proteins that are highly similar to
the ones in the test set, as evaluated by structural and sequence
alignment. They concluded that ML SFs do not outperform
classical scoring functions after removal of proteins from the

training set with a high degree of similarity with the test set and
therefore they attributed the higher performance of ML SFs
compared to classical SFs to the existence of similarities
between proteins in the training and test sets. Li et al. (2018),
however, performed a similar study and concluded that the good
scoring power of RF-Score is not exclusively due to a high number
of similar proteins, although when sufficiently similar targets are
present in both the training and test set ML scoring functions
perform consistently better than classical scoring functions (Shen
et al., 2020b). Additionally, ML scoring functions are able to
exploit new data points as they become available, while classical
scoring functions seem unable to exploit the large volumes of
structural and interaction data available nowadays; incorporating
a larger proportion of similar complexes to the training set does
not seem to make classical SFs more accurate, according to Li
et al. (2019b).

Boyles et al. (2019) and Su et al. (2020) both developed sub-
sets of the PDBbind data set to carefully evaluate the effect of
protein and ligand similarities on the performance of models
trained on PDBbind and tested on the CASF data set. Boyles et al.
(2019) evaluated ligand similarity using the Tanimoto similarity
betweenMorgan fingerprints of each pair of ligands while protein
similarity was evaluated with by sequence identity. Su et al. (2020)
also used protein sequences to determine protein similarity, but
used 3D shape similarity (Vainio et al., 2009) to evaluate the
similarity between ligands. Additionally, Su et al. (2020) also
evaluated binding site similarity—the binding site might be
preserved, in contrast to the overall protein sequence—using
structural descriptors including residue types and interatomic
distances (Yeturu and Chandra 2008). Both groups confirmed the
strong dependence on the similarity between the training and test
set of the performance of ML scoring functions, which poses a
challenge in the comparison of ML and DL SFs with classical SFs.
While these considerations are very important in the
development of new methods and it is important to take them
into account when comparing different models, in practical
applications the similarity between the training set and the
system under investigation can be exploited to obtain superior
predictions compared to classical SFs. For example, Li et al.
(2021a) argue that the performance of ML scoring functions is
underestimated due to the artificial removal of similarities
between the training and tests sets and put forward a new
benchmark with tries to mimic prospective binding affinity
predictions. However, it is important to keep in mind that ML
and DL SFs might be less effective when dealing with novel targets
or small molecules (Su et al., 2020), and the applicability domain
needs to be clearly defined.

Very recently, Ji et al. (2022) developed a free and open-source
Python package that allows to curate dataset for benchmarking
out-of-distribution (OOD) algorithms in the context of protein-
ligand binding affinity predictions. The authors highlight a
significant performance gap between in-distribution and OOD
experiments, highlighting the need for new and domain-specific
techniques allowing better OOD generalization.

Another way to elucidate the performance of ML and DL SFs
in light of similarities and dissimilarities between the training test
set is to use clustered cross-validation. K-fold cross-validation is
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an established technique for the evaluation of ML and DL models
(Arlot and Celisse 2010) that consists of randomly splitting the
training set into K different sets and use, in turn, K − 1 sets for
training and the remaining set for validation/testing. Francoeur
et al. (2020) evaluated the performance of their CNN scoring
function using cross-validation with clusters based on protein
sequence and ligand fingerprint similarities (for the models
trained using PDBbind) and also concluded that evaluations
based on the PDBbind core set are overly-optimistic and
therefore a rather poor measure of the model’s ability to
generalize to novel target and small molecules.

Finally, care should be taken in the presence of data set bias.
One of the simplest forms of bias in current data sets is that
published binding affinities tend to come from publications
where potent binders were identified. Therefore, the
distribution of binding affinities available for training might be
skewed to potent binders and the trained model might be unable
to predict binding affinities for weak binders. Bias can also be
introduced in the construction of the training and test sets. For
example, for the classification of actives and decoys on the DUD-
E data set (Mysinger et al., 2012) it has been shown that analogue
bias together with easily distinguishable decoys (decoys bias)
result in CNN SFs exploiting only ligand information even when
structure-based information is provided (Chen L. et al., 2019).
Yang et al. (2020) also caution about the use of DUD-E to train
ML and DL models to predict protein-ligand interactions but
point out that the data set can still serve as an independent test set.
Sieg et al. (2019) analyzed the problem of data set bias in-depth
and proposed guidelines to recognize biases and develop robust
models. Yang et al. (2020) suggest to evaluate the performance of
ligand-only and protein-only models to better understand what
ML and DLmethods are learning from protein-ligand complexes.

The problem of unnoticed biases in the dataset that are
exploited on learning by complex DL models is related to the
infamous “black box” nature of some models.

6 EXPLAINABLE AI

As mentioned in the previous section, the “black box” nature of
some models poses serious challenges in the identification of
biases in the data sets and often prevents a deeper understanding
of the model predictions and especially of its failures. In recent
years, a lot of research effort has been devoted to model
interpretability and explainable artificial intelligence (XAI)
(Lipton 2018; Gunning et al., 2019; Murdoch et al., 2019).

To unpack the predictions of CNN-based scoring functions,
several authors focused on feature attribution methods. For
example, Stepniewska-Dziubinska et al. (2018) estimated
feature importance of the different input channels by looking
at the weight distributions of the convolutional filters of the first
layer. Hochuli et al. (2018) also looked at the weights of the
convolutional filters of the first layer, which can give some insight
on how the model uses the different input atom types. Hochuli
et al. (2018) used additional established methods for feature
attribution—such as gradient computation, a modified version
of layer-wise relevance propagation (Bach et al., 2015), and

masking (Štrumbelj et al., 2009; Szegedy et al., 2013)—
combined with visualization of the protein-ligand complex,
showing that each method provides some insight into their
CNN scoring function.

Gradient-based feature attribution methods, which allow to
determine (local) feature importance, consist in computing the
gradient of the prediction with respect to the input. In DLmodels,
such gradients are readily available thanks to the automatic
differentiation machinery of modern deep learning
frameworks. Interestingly, the gradients of the SF with respect
to atomic coordinates can be used to perform ligand pose
optimization in the context of docking (Ragoza et al., 2017b).
Masking, a perturbation-based feature attribution approach,
consists in removing part of the input in order to measure the
change in output. Masking can be performed on single atoms or
fragments and whole protein residues. While masking
approaches are close to chemical intuition and directly
estimate feature importance of different atoms or functional
groups, they are computationally expensive since they require
several evaluations per input.

Hochuli et al. (2018) show that feature attributionmethods are
able to identify important atoms in the ligand and this
information can potentially be employed to optimize protein-
ligand interactions during lead optimization. However, it is not
always clear why particular atoms are highlighted as important
(Hochuli et al., 2018). More recently, Varela-Rial et al. (2022)
applied the integrated gradient feature attribution technique
(Sundararajan et al., 2017) to their Kdeep model, confirming
that the model can generally learn meaningful interactions,
but that in some cases important interactions where ignored
or protein residues far from the ligand were highlighted. The fact
that residues far from the ligand are highlighted as important
suggest that in some cases the model is exploiting protein
similarity instead of important physical interactions between
the protein and the ligand.

The feature attribution methods shortly described above in the
context of CNN SFs can be applied to other models as well. For
example, gradient-based attribution has been applied in
combination with GNNs to identify pharmacophoric features
involved in ligand binding (McCloskey et al., 2019), while Cho
et al. (2020) applied layer-wise relevance propagation to explain
the predictions of their InteractionNet model.

For GNNs, there are several XAI methods specifically tailored
for such architecture (Jiménez-Luna et al., 2020) and it is
currently a vibrant area of research (Baldassarre and Azizpour
2019; Yuan et al., 2020; Agarwal et al., 2021). XAI methods for
graphs can be classified in two categories (Jiménez-Luna et al.,
2020): sub-graph identification, and attention-based (Veličković
et al., 2017) approaches. Sub-graph identification is useful to
identify a compact sub-graph structure as well as a small subset of
node features that contribute strongly to the model prediction
(Ying et al., 2019). While GNN-based XAI has seen several
applications in the prediction of molecular properties and
reactivity (Ryu et al., 2018; Coley et al., 2019; Preuer et al.,
2019; Jiménez-Luna et al., 2021b), its consistent application to
GNN-based structure-based scoring function is still under-
explored.
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Uncertainty quantification, briefly discussed above in the
context of model evaluation, is also an important XAI
technique with the goal of quantifying the reliability of a
prediction. Ensemble approaches are currently employed in
most applications but probabilistic approaches such as
evidential deep learning (Amini et al., 2020; Soleimany et al.,
2021) will play a major role in the future.

Model interpretability is also important for classical ML
methods—such as RFs, and SVMs—and QSAR models
(Riniker and Landrum 2013b; Marchese Robinson et al., 2017;
Rodríguez-Pérez and Bajorath 2019; Sheridan 2019), that are not
the focus of this review. Several XAI methods are model-agnostic
and therefore work with several ML and DLmethods. However, it
is worth mentioning that the heavily pre-processed

TABLE 2 | Non-exhaustive list of deep learning architectures for protein-ligand binding affinity prediction and their performance on the CASF-2016 scoring benchmark (if
available). MLPs are included regardless of the number of hidden layers. Some methods are described in multiple publications and the ones referenced in this table are
the ones where the model has been evaluated on the PDBbind Core set 2016/CASF-2016 set (or the original publication, if this evaluation is not available). The best result (the
highest Pearson’s r) is reported. Different publications might use slightly different custom variations of the CASF-2016 benchmark and the overlap between training and test
sets might be taken into account in different ways. We refer the reader to the original publications for details, but we also report the number, N, of systems in the test set to
outline possible differences. RMSEs are expressed in pK units.

Model References Architecture Pearson’s r RMSE N

— Artemenko (2008) MPL — — —

NNScore 2.0 Durrant and McCammon (2011b) MPL — — —

BgN- & BsN-Score Ashtawy and Mahapatra (2015) MPL — — —

DLscore Hassan et al. (2018) MPL — — —

PLEC-NN Wójcikowski et al. (2018) MLP 0.82 — 290
Pair Zhu et al. (2020) MLP 0.75 1.44 285
AEScore Meli et al. (2021) MLP 0.83 1.22 285
TopologyNet Cang and Wei (2017) CNN 0.81 1.34 290
Kdeep Jiménez et al. (2018) CNN 0.82 1.27 290
Pafnucy Stepniewska-Dziubinska et al. (2018) CNN 0.78 1.42 290
1D2D-CNN Cang et al. (2018) CNN 0.85 1.21 290
DeepAtom Li et al. (2019c) CNN 0.81 1.32 290
OnionNet Zheng et al. (2019) CNN 0.82 1.28 290
GNINA Francoeur et al. (2020) CNN 0.80 1.37 280
RosENet Hassan-Harrirou et al. (2020) CNN 0.82 1.24
AK-Score Kwon et al. (2020) CNN 0.81 — 285
LigityScore1D Azzopardi and Ebejer (2021) CNN 0.74 1.46 285
OnionNet-2 Wang et al. (2021d) CNN 0.86 1.16 285
SE-OnionNet Wang et al. (2021b) CNN 0.83 — 285
ACNN Gomes et al. (2017) GNN — — —

PotentialNet Feinberg et al. (2018) GNN — — —

graphDelta Karlov et al. (2020) GNN 0.87 1.05 285
SIGN Li et al. (2021c) GNN 0.80 1.32 290
InteractionGraphNet Jiang et al. (2021) GNN 0.84 1.22 262
GraphBAR Son and Kim (2021) GNN 0.78 1.41 290
PLIG/GATNet Moesser et al. (2022) GNN 0.84 1.22 272
PIGNet Moon et al. (2022) GNN 0.76 — 283
— Berishvili et al. (2019) CNN/ RNN — — —

FAST Jones et al. (2021) CNN + GNN 0.81 1.31 290
BAPA Seo et al. (2021) CNN + ATT 0.82 1.30 285
PointTransformer Wang et al. (2021c) CNN + ATT 0.85 1.19 285

TABLE 3 | Performance of the models summarized in Table 2 on the CSAR-NRC HiQ scoring benchmark. We only report evaluation results from the original reference.
RMSEs are expressed in pK units.

Model References Set 1 r Set 1
RMSE

Set 2 r Set 2
RMSE

Kdeep Jiménez et al. (2018) 0.72 2.08 0.65 1.91
RosENet Hassan-Harrirou et al. (2020) 0.83 1.78 0.80 1.44
OnionNet-2 Wang et al. (2021d) 0.89 1.50 0.87 1.21
graphDelta Karlov et al. (2020) 0.74 1.59 0.71 1.52
GraphBAR Son and Kim (2021) 0.75 1.59 0.65 1.56
PIGNet Moon et al. (2022) 0.77 — 0.80 —

BAPA Seo et al. (2021) 0.83 1.06 0.75 0.98
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features—such as interaction fingerprints discussed above—often
used in combination with classical ML methods might render the
models less interpretable than complex DL methods (Lipton
2018).

XAI approaches have the potential to transform the
application of DL in real drug discovery applications. Being
able to explain why a particular prediction is relevant and
interesting would facilitate the adaptation of computational
models in experimental pipelines. However, several limitations
of XAI remain. For example, XAI approaches are still under active
development and research, and often the methods need to be
carefully tailored to the problem at hand. Additionally, as pointed
out by Jiménez-Luna et al. (2020), there is no method that
combines all desirable features of XAI—transparency,
justification, informativeness, and uncertainty estimation—and
therefore current applications often rely on consensus approaches
between methods possessing different desirable features.

A recent, extensive, and very accessible review of XAI
applications in drug discovery is given by Jiménez-Luna et al.
(2020), which also outline recent advances in the field of XAI that
are yet to be applied to chemistry or drug discovery. However, the
field is moving at a fast pace and some of the methods without any
reported application in drug discovery in Jiménez-Luna et al.
(2020)—such as instance-based methods—are now starting to be
applied successfully (Wellawatte et al., 2022).

7 DISCUSSION AND CONCLUSION

In this review, we focused on structure-based scoring functions
for binding affinity prediction based on deep learning, many of
which have been developed in recent years. The large number of
recently developed SFs (see Table 2 for a non-exhaustive list) is a
testament to this rapid and fast-moving field. Li H. et al. (2020)
recently reviewed ML and DL scoring functions for structure-
based lead optimization developed between 2015 and 2019, but
several new DL SFs have been developed and published in the last
2 years. Another example is the review of Shen et al. (2019), where
only one GNN-based scoring function—PotentialNet (Feinberg
et al., 2018)—was identified; most GNN scoring functions in
Table 2 are from 2020 and later.

Table 2 reports the scoring performance of several deep
learning SFs mostly based on MLPs, CNNs, and GNNs on the
CASF-2016 benchmark (whenever available in the primary
reference). Tables 3, 4 report the scoring performance
(Pearson’s correlation coefficient) for the CSAR-NRC HiQ sets

and the Astex Diverse Set for the same methods outlined in
Table 2. The significantly lower number of methods tested on the
CSAR-NRC HiQ sets and the Astex Diverse Set shows that the
CASF benchmark is the de facto standard for the assessment of
novel ML and DL scoring functions. Going forward, it would be
interesting to see the other benchmarks gaining more traction in
order to obtain more information about scoring function
performance.

Despite the standardized benchmarks, some methods required
the removal of some systems—leading to parametrization
problems or outside the applicability domain—, but it is clear
that most methods achieve similar performance on this
benchmark. Additionally, the comparison between different
methods on the same benchmark remains challenging due to
possible differences in the training set—and the possible overlap
between training and test sets. Finally, most methods are only
tested on the CASF benchmark, despite other benchmark sets
being widely available. These observations call for an in-depth
comparison of the different methods trained and tested on exactly
the same data sets, and using all available high-quality test sets.

The performance on CASF-2016 of the DL methods reviewed
here is much higher than the performance of classical SFs on the
same benchmark (Su et al., 2018). However, deep learning scoring
functions do not always perform better or significantly better than
scoring functions based on classical ML algorithms (Li H. et al.,
2020). For example, it was shown that deep NNs and shallow
regularized NNs perform similarly in QSAR applications when
using the same set of descriptors (Winkler and Le 2016), and RF-
based methods can achieve state-of-the-art performance when
combined with suitable descriptors (Boyles et al., 2019). This is in
stark contrast with other fields such as computer vision and
natural language processing, where DL has quickly taken over
classical ML algorithms. Additionally, while most ML and DL SFs
for binding affinity prediction are trained and tested on crystal
structures, their performance deteriorates when trained and
tested on docked poses (Boyles et al., 2021), but it is worth
noting that augmenting structure-based features obtained from
docked structures with ligand-based features can recover the
performance of structure-based models trained on crystal
structures.

Another problem identified with ML and DL stricture-based
SFs for binding affinity prediction is that while they perform
significantly better than classical SFs for scoring (better
correlation of the score with experimental binding affinities),
they often perform poorly in virtual screening tasks (Gabel et al.,
2014). Gabel et al. (2014) suggest that the development of novel
ML and DL scoring function for binding affinity predictions
should be accompanied by analysis of ligand pose sensitivity and
enrichment capabilities in structure-based virtual screening. A
more recent study by Shen et al. (2020a) confirms thatML scoring
functions trained on PDBbind do not work well for virtual
screening, especially on novel targets or targets with
unconventional binding pockets. Multitask learning for
binding affinity prediction and pose prediction trained using
docked poses instead of crystallographic structures is effective to
increase pose sensitivity in the context of CNN scoring functions
(Francoeur et al., 2020). In the context of virtual screening, data

TABLE 4 | Performance of the models summarized in Table 2 on the Astex
Diverse Set scoring benchmark. We only report evaluation results from the
original reference. RMSEs are expressed in pK units.

Model References Pearson’s r RMSE

Pafnucy Stepniewska-Dziubinska et al (2018) 0.57 1.37
DeepAtom Li et al. (2019c) 0.77 1.03
RosENet Hassan-Harrirou et al. (2020) 0.48 1.65
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augmentation techniques can also increase pose sensitivity by
forcing the model to rely less on ligand information (Scantlebury
et al., 2020).

It is well known that the maximum achievable performance of
ML and DL models for binding affinity predictions is limited by
experimental errors and uncertainties (Kramer et al., 2012). This
explains the similar performance of the best performing models
on CASF-2016, which are likely close to the theoretical limit.
Ventures like the Critical Assessment of Computational Hit-
finding Experiments (CACHE) (Müller et al., 2022) will play
an important role to validate computational methods in the
future and generate a larger corpus of very high-quality data.

Going forward, it is important to evaluate ML and DL scoring
functions as part of the docking pipeline. Most SFs discussed here
are applied as a post-processing step of docking—or they are only
applied to crystal structures—and only a few SFs seem to have
been incorporated into readily available docking software. One
such example is GNINA, where the CNN scoring function can be
employed within the docking pipeline to re-score or locally
optimize the ligand poses after fast Monte Carlo search
(McNutt et al., 2021).

In this review, we have focussed mainly on methods for the
prediction of protein-ligand binding affinity, and scoring functions
evaluated on scoring tasks. However, ranking different compounds
against the same target of interest is extremely useful in drug
discovery applications. This is the case for lead optimization,
where a lead compound against the target of interest has been
identified and the goal is to increase potency while improving
pharmacokinetic and pharmacodynamic properties. With binding
affinity predictions computing such rankings is trivial. However, it
remains unclear if the performance of ML and DL methods
developed for scoring work equally well for ranking, especially in
real drug discovery applications. For example somemethods trained
to predict binding affinities performed poorly on the different task of
predicting the differences in binding affinity upon protein mutation
(Aldeghi et al., 2018b). DL methods specifically designed for
ranking—computing relative binding affinities—have been
developed (Jiménez-Luna et al., 2019) and are an active area of
research (McNutt and Koes 2022).

Given that the performance of a DL SFs varies widely from the
target under consideration (Jiménez et al., 2018; Hassan-Harrirou
et al., 2020; Meli et al., 2021), there is a lot of room for improvement
in the development of target-specific scoring functions (Ross et al.,
2013; Nogueira and Koch 2019). ML and DL algorithms are very
good at exploiting similarities between inputs to perform
predictions—as demonstrated by the performance drop when

similarities between the training and test sets are removed
(Boyles et al., 2019; Su et al., 2020)—and therefore family-specific
scoring function will play an increasing role in early stages of drug
discovery, when a particular target has been identified. However, it is
still unclear if family-specific structure-based SFs consistently
outperform ligand-based methods (Shen et al., 2020a).

Finally, given the ultimate goal of lowering the high attrition
rate at later stages of drug discovery, the use of ADME/Tox
predictions will also play an increasingly important role
(Bhhatarai et al., 2019) alongside SFs to identify potent
compounds against the target of interest and prioritize
compounds for further experimental validation.

While the application of deep learning has not yet provided a
step-changing improvement in the performance of binding
affinity prediction compared to classical ML methods, further
research into novel architectures, combined with the ever-
increasing size and quality of data sets of protein-ligand
complexes might change the tide in the future. Physics-based
ML and DL will probably take over purely data-driven models in
the long term, combining the best of both worlds. It is however
important to remain realistic on the capabilities of DL SFs and it
will be interesting to see how they actually perform in real-world
drug discovery applications. Schneider et al. (2019) suggest a
“curious but cautious approach” to the application of DL in the
drug discovery process. XAI methods will certainly play a central
role in the application of DL scoring functions to real drug
discovery programs because knowing the reason behind a
given prediction and understanding well the failure modes of
the developed models will help to guide the next steps in the drug
discovery process.

AUTHOR CONTRIBUTIONS

RM, GM, and PB conceptualised the review. RM wrote the initial
draft. RM, GM, and PB edited, reviewed, and expanded the initial
draft. All authors read and approved the final manuscript.

FUNDING

This work was supported by funding from the Biotechnology and
Biological Sciences Research Council (BBSRC) [BB/MO11224/1]
National Productivity Investment Fund (NPIF) [BB/S50760X/1]
and Evotec (UK) via the Interdisciplinary Biosciences DTP at the
University of Oxford.

REFERENCES

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., et al. (2015).
GROMACS: High Performance Molecular Simulations through Multi-Level
Parallelism from Laptops to Supercomputers. SoftwareX 1-2, 19–25. doi:10.
1016/j.softx.2015.06.001

Adcock, S. A., and McCammon, J. A. (2006). Molecular Dynamics: Survey of
Methods for Simulating the Activity of Proteins. Chem. Rev. 106, 1589–1615.
doi:10.1002/chin.20063029710.1021/cr040426m

Agarwal, C., Zitnik, M., and Lakkaraju, H. (2021). Towards a Rigorous Theoretical
Analysis and Evaluation of GNN Explanations. arXiv preprint arXiv:2106.09078.

Aggarwal, R., Gupta, A., Chelur, V., Jawahar, C. V., and Priyakumar, U. D. (2021).
DeepPocket: Ligand Binding Site Detection and Segmentation Using 3D
Convolutional Neural Networks. J. Chem. Inf. Model. doi:10.1021/acs.jcim.1c00799

Aggarwal, R., and Koes, D. R. (2020). Learning Rmsd to Improve Protein-Ligand
Scoring and Pose Selection. ChemRxiv. doi:10.26434/chemrxiv.11910870.v2

Ahmed, A., Smith, R. D., Clark, J. J., Dunbar, J. B., and Carlson, H. A. (2014). Recent
Improvements to Binding MOAD: a Resource for Protein-Ligand Binding Affinities
and Structures. Nucleic Acids Res. 43, D465–D469. doi:10.1093/nar/gku1088

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598320

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/chin.20063029710.1021/cr040426m
https://doi.org/10.1021/acs.jcim.1c00799
https://doi.org/10.26434/chemrxiv.11910870.v2
https://doi.org/10.1093/nar/gku1088
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Ain, Q. U., Aleksandrova, A., Roessler, F. D., and Ballester, P. J. (2015). Machine-
learning Scoring Functions to Improve Structure-Based Binding Affinity
Prediction and Virtual Screening. Wiley Interdiscip. Rev. Comput. Mol. Sci.
5, 405–424. doi:10.1002/wcms.1225

Aldeghi, M., Gapsys, V., and de Groot, B. L. (2018b). Accurate Estimation of
Ligand Binding Affinity Changes upon Protein Mutation. ACS Cent. Sci. 4,
1708–1718. doi:10.1021/acscentsci.8b00717

Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., and Biggin, P. C. (2016). Accurate
Calculation of the Absolute Free Energy of Binding for Drug Molecules. Chem.
Sci. 7, 207–218. doi:10.1039/c5sc02678d

Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., and Biggin, P. C. (2017).
Predictions of Ligand Selectivity from Absolute Binding Free Energy
Calculations. J. Am. Chem. Soc. 139, 946–957. doi:10.1021/jacs.6b11467

Aldeghi, M., Bluck, J. P., and Biggin, P. C. (2018a). “Absolute Alchemical Free
Energy Calculations for Ligand Binding: A Beginner’s Guide,” in Methods in
Molecular Biology (New York: Springer), 199–232. doi:10.1007/978-1-4939-
7756-7_11

Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O’Meara, M. J., DiMaio, F. P., Park, H.,
et al. (2017). The Rosetta All-Atom Energy Function for Macromolecular
Modeling and Design. J. Chem. Theory Comput. 13, 3031–3048. doi:10.1021/
acs.jctc.7b00125

Alibay, I., Magarkar, A., Seeliger, D., and Biggin, P. (2022). Evaluating the Use of
Absolute Binding Free Energy in the Fragment Optimization Process.
ChemRxiv. doi:10.26434/chemrxiv-2022-cw2kq

Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T.,
et al. (2015). DOCK 6: Impact of New Features and Current Docking
Performance. J. Comput. Chem. 36, 1132–1156. doi:10.1002/jcc.23905

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
Local Alignment Search Tool. J. Mol. Biol. 215, 403–410. doi:10.1016/s0022-
2836(05)80360-2

Amini, A., Schwarting, W., Soleimany, A., and Rus, D. (2020). Deep Evidential
Regression. Adv. Neural Inf. Process. Syst. 33, 14927–14937.

Åqvist, J., Medina, C., and Samuelsson, J. E. (1994). A New Method for Predicting
Binding Affinity in Computer-Aided Drug Design. Protein Eng. 7, 385–391.
doi:10.1093/protein/7.3.385

Arlot, S., and Celisse, A. (2010). A Survey of Cross-Validation Procedures for
Model Selection. Stat. Surv. 4, 40–79. doi:10.1214/09-ss054

Artemenko, N. (2008). Distance Dependent Scoring Function for Describing
Protein-Ligand Intermolecular Interactions. J. Chem. Inf. Model. 48,
569–574. doi:10.1021/ci700224e

Ashtawy, H. M., and Mahapatra, N. R. (2015). BgN-score and BsN-Score: Bagging
and Boosting Based Ensemble Neural Networks Scoring Functions for Accurate
Binding Affinity Prediction of Protein-Ligand Complexes. BMC Bioinforma. 16
Suppl 4, S8. doi:10.1186/1471-2105-16-s4-s8

Ashtawy, H. M., and Mahapatra, N. R. (2017). Task-specific Scoring Functions for
Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
J. Chem. Inf. Model. 58, 119–133. doi:10.1021/acs.jcim.7b00309

Atz, K., Grisoni, F., and Schneider, G. (2021). Geometric Deep Learning on
Molecular Representations. Nat. Mach. Intell. 3, 1023–1032. doi:10.1038/
s42256-021-00418-8

Azzopardi, J., and Ebejer, J. (2021). LigityScore: Convolutional Neural Network for
Binding-Affinity Predictions. Proc. 14th Int. Jt. Conf. Biomed. Eng. Syst.
Technol., 38–49. doi:10.5220/0010228300380049

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., and Samek, W.
(2015). On Pixel-wise Explanations for Non-linear Classifier Decisions by
Layer-wise Relevance Propagation. PLoS One 10, e0130140. doi:10.1371/
journal.pone.0130140

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473.

Baldassarre, F., and Azizpour, H. (2019). Explainability Techniques for Graph
Convolutional Networks. arXiv preprint arXiv:1905.13686.

Baldi, P. (2021). Deep Learning in Science. Cambridge University Press. doi:10.
1017/9781108955652Deep Learning in Science

Ballester, P. J., and Mitchell, J. B. (2010). A Machine Learning Approach to
Predicting Protein-Ligand Binding Affinity with Applications to Molecular
Docking. Bioinformatics 26, 1169–1175. doi:10.1093/bioinformatics/
btq112

Ballester, P. J., Schreyer, A., and Blundell, T. L. (2014). Does aMore Precise Chemical
Description of Protein-Ligand Complexes Lead to More Accurate Prediction of
Binding Affinity? J. Chem. Inf. Model. 54, 944–955. doi:10.1021/ci500091r

Bao, J., He, X., and Zhang, J. Z. H. (2021). DeepBSP-a Machine Learning Method
for Accurate Prediction of Protein-Ligand Docking Structures. J. Chem. Inf.
Model. 61, 2231–2240. doi:10.1021/acs.jcim.1c00334

Bartók, A. P., De, S., Poelking, C., Bernstein, N., Kermode, J. R., Csányi, G., et al.
(2017). Machine Learning Unifies theModeling of Materials andMolecules. Sci.
Adv. 3, e1701816. doi:10.1126/sciadv.1701816

Bartók, A. P., Kondor, R., and Csányi, G. (2013). On Representing Chemical
Environments. Phys. Rev. B 87, 184115. doi:10.1103/physrevb.87.184115

Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R., and Kollman, P. A. (1987).
Calculation of the Relative Change in Binding Free Energy of a Protein-
Inhibitor Complex. Science 235, 574–576. doi:10.1126/science.3810157

Baskin, I. I. (2020). The Power of Deep Learning to Ligand-Based Novel Drug
Discovery. Expert Opin. Drug Discov. 15, 755–764. doi:10.1080/17460441.2020.
1745183

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., et al. (2018). Relational Inductive Biases, Deep Learning, and
Graph Networks. arXiv preprint arXiv:1806.01261.

Behler, J., and Parrinello, M. (2007). Generalized Neural-Network Representation
of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 98, 146401.
doi:10.1103/physrevlett.98.146401

Benson, M. L., Smith, R. D., Khazanov, N. A., Dimcheff, B., Beaver, J., Dresslar, P.,
et al. (2007). Binding MOAD, a High-Quality Protein-Ligand Database.Nucleic
Acids Res. 36, D674–D678. doi:10.1093/nar/gkm911

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., et al.
(2013). The ChEMBL Bioactivity Database: An Update. Nucleic Acids Res. 42,
D1083–D1090. doi:10.1093/nar/gkt1031

Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995). GROMACS: A
Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys.
Commun. 91, 43–56. doi:10.1016/0010-4655(95)00042-e

Berishvili, V. P., Perkin, V. O., Voronkov, A. E., Radchenko, E. V., Syed, R.,
Venkata Ramana Reddy, C., et al. (2019). Time-domain Analysis of Molecular
Dynamics Trajectories Using Deep Neural Networks: Application to Activity
Ranking of Tankyrase Inhibitors. J. Chem. Inf. Model. 59, 3519–3532. doi:10.
1021/acs.jcim.9b00135

Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., et al.
(2000). The Protein Data Bank and the Challenge of Structural Genomics. Nat.
Struct. Biol. 7 Suppl, 957–959. doi:10.1038/80734

Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers,
J. R., et al. (1977). The Protein Data Bank. A Computer-Based Archival File for
Macromolecular Structures. Eur. J. Biochem. 80, 319–324. doi:10.1016/s0022-
2836(77)80200-310.1111/j.1432-1033.1977.tb11885.x

Bhhatarai, B., Walters, W. P., Hop, C. E. C. A., Lanza, G., and Ekins, S. (2019).
Opportunities and Challenges Using Artificial Intelligence in ADME/Tox. Nat.
Mat. 18, 418–422. doi:10.1038/s41563-019-0332-5

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer New
York. doi:10.1007/978-0-387-45528-0Pattern Recognition and Machine
Learning

Böhm, H.-J., and Stahl, M. (2002). “The Use of Scoring Functions in Drug
Discovery Applications,” in Reviews in Computational Chemistry (John
Wiley & Sons), 18, 41–87. chap. 2. doi:10.1002/0471433519.ch2

Böhm, H. J. (1992). Ludi: Rule-Based Automatic Design of New Substituents for
Enzyme Inhibitor Leads. J. Comput. Aided Mol. Des. 6, 593–606. doi:10.1007/
BF00126217

Böhm, H. J. (1994). The Development of a Simple Empirical Scoring Function to
Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-
Dimensional Structure. J. Comput. Aided Mol. Des. 8, 243–256. doi:10.1007/
bf00126743

Boresch, S., Tettinger, F., Leitgeb, M., and Karplus, M. (2003). Absolute Binding
Free Energies: A Quantitative Approach for Their Calculation. J. Phys. Chem. B
107, 9535–9551. doi:10.1021/jp0217839

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A Training Algorithm for
Optimal Margin Classifiers,” in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory - COLT ’92 (New York, NY, USA: Association
for Computing Machinery), 144–152. doi:10.1145/130385.130401

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598321

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1002/wcms.1225
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1039/c5sc02678d
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1007/978-1-4939-7756-7_11
https://doi.org/10.1007/978-1-4939-7756-7_11
https://doi.org/10.1021/acs.jctc.7b00125
https://doi.org/10.1021/acs.jctc.7b00125
https://doi.org/10.26434/chemrxiv-2022-cw2kq
https://doi.org/10.1002/jcc.23905
https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.1093/protein/7.3.385
https://doi.org/10.1214/09-ss054
https://doi.org/10.1021/ci700224e
https://doi.org/10.1186/1471-2105-16-s4-s8
https://doi.org/10.1021/acs.jcim.7b00309
https://doi.org/10.1038/s42256-021-00418-8
https://doi.org/10.1038/s42256-021-00418-8
https://doi.org/10.5220/0010228300380049
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1017/9781108955652
https://doi.org/10.1017/9781108955652
https://doi.org/10.1093/bioinformatics/btq112
https://doi.org/10.1093/bioinformatics/btq112
https://doi.org/10.1021/ci500091r
https://doi.org/10.1021/acs.jcim.1c00334
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1126/science.3810157
https://doi.org/10.1080/17460441.2020.1745183
https://doi.org/10.1080/17460441.2020.1745183
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1093/nar/gkm911
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1021/acs.jcim.9b00135
https://doi.org/10.1021/acs.jcim.9b00135
https://doi.org/10.1038/80734
https://doi.org/10.1016/s0022-2836(77)80200-310.1111/j.1432-1033.1977.tb11885.x
https://doi.org/10.1016/s0022-2836(77)80200-310.1111/j.1432-1033.1977.tb11885.x
https://doi.org/10.1038/s41563-019-0332-5
https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1002/0471433519.ch2
https://doi.org/10.1007/BF00126217
https://doi.org/10.1007/BF00126217
https://doi.org/10.1007/bf00126743
https://doi.org/10.1007/bf00126743
https://doi.org/10.1021/jp0217839
https://doi.org/10.1145/130385.130401
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Bottou, L. (1998). Online Learning and Stochastic Approximations. On-line Learn.
neural Netw. 17 (9), 142.

Boyles, F., Deane, C. M., and Morris, G. M. (2019). Learning from the Ligand:
Using Ligand-Based Features to Improve Binding Affinity Prediction.
Bioinformatics 36, 758–764. doi:10.1093/bioinformatics/btz665

Boyles, F., Deane, C. M., and Morris, G. M. (2021). Learning from Docked Ligands:
Ligand-Based Features Rescue Structure-Based Scoring Functions when
Trained on Docked Poses. J. Chem. Inf. Model. doi:10.1021/acs.jcim.1c00096

Bozinovski, S., and Fulgosi, A. (1976). The Influence of Pattern Similarity and
Transfer Learning upon Training of a Base Perceptron B2. Proc. Symposium
Inf., 3–121.

Breiman, L. (1996). Bagging Predictors. Mach. Learn. 24, 123–140. doi:10.1007/
bf00058655

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric Deep
Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv preprint arXiv:
2104.13478.

Brown, D. G., and Wobst, H. J. (2021). A Decade of FDA-Approved Drugs (2010-
2019): Trends and Future Directions. J. Med. Chem. 64, 2312–2338. doi:10.
1021/acs.jmedchem.0c01516

N. Brown (Editor) (2020). Artificial Intelligence in Drug Discovery. Drug Discovery
(London, UK: Royal Society of Chemistry). doi:10.1039/9781788016841

Cai, C., Wang, S., Xu, Y., Zhang, W., Tang, K., Ouyang, Q., et al. (2020). Transfer
Learning for Drug Discovery. J. Med. Chem. 63, 8683–8694. doi:10.1021/acs.
jmedchem.9b02147

Cang, Z., Mu, L., andWei, G.W. (2018). Representability of Algebraic Topology for
Biomolecules in Machine Learning Based Scoring and Virtual Screening. PLOS
Comput. Biol. 14, e1005929. doi:10.1371/journal.pcbi.1005929

Cang, Z., and Wei, G. W. (2017). TopologyNet: Topology Based Deep
Convolutional and Multi-Task Neural Networks for Biomolecular Property
Predictions. PLOS Comput. Biol. 13, e1005690. doi:10.1371/journal.pcbi.
1005690

Carlson, H. A., Smith, R. D., Damm-Ganamet, K. L., Stuckey, J. A., Ahmed, A.,
Convery, M. A., et al. (2016). CSAR 2014: A Benchmark Exercise Using
Unpublished Data from Pharma. J. Chem. Inf. Model. 56, 1063–1077.
doi:10.1021/acs.jcim.5b00523

Caruana, R., Lawrence, S., and Giles, L. (2001). Overfitting in Neural Nets:
Backpropagation, Conjugate Gradient, and Early Stopping. Adv. Neural Inf.
Process Syst., 402–408.

Chang, C. E., Chen, W., and Gilson, M. K. (2007). Ligand Configurational Entropy
and Protein Binding. Proc. Natl. Acad. Sci. U. S. A. 104, 1534–1539. doi:10.1073/
pnas.0610494104

Charifson, P. S., Corkery, J. J., Murcko, M. A., and Walters, W. P. (1999).
Consensus Scoring: A Method for Obtaining Improved Hit Rates from
Docking Databases of Three-Dimensional Structures into Proteins. J. Med.
Chem. 42, 5100–5109. doi:10.1021/jm990352k

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., and Blaschke, T. (2018a). The
Rise of Deep Learning in Drug Discovery. Drug Discov. Today 23, 1241–1250.
doi:10.1016/j.drudis.2018.01.039

Chen, L., Cruz, A., Ramsey, S., Dickson, C. J., Duca, J. S., Hornak, V., et al. (2019a).
Hidden Bias in the DUD-E Dataset Leads to Misleading Performance of Deep
Learning in Structure-Based Virtual Screening. PLoS One 14, e0220113. doi:10.
1371/journal.pone.0220113

Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., et al.
(2018b). “The Best of Both Worlds: Combining Recent Advances in
Neural Machine Translation,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 76‒86, Melbourne, Australia. Association for
Computational Linguistics

Chen, P., Ke, Y., Lu, Y., Du, Y., Li, J., Yan, H., et al. (2019b). DLIGAND2: an
Improved Knowledge-Based Energy Function for Protein-Ligand Interactions
Using the Distance-Scaled, Finite, Ideal-Gas Reference State. J. Cheminform 11,
52–11. doi:10.1186/s13321-019-0373-4

Chen, T., and Guestrin, C. (2016). “XGBoost,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(ACM), 785–794. doi:10.1145/2939672.2939785

Chen, X., Liu, M., and Gilson, M. K. (2001). BindingDB: A Web-Accessible
Molecular Recognition Database. Comb. Chem. High. Throughput Screen 4,
719–725. doi:10.2174/1386207013330670

Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R. (2009). Comparative Assessment of
Scoring Functions on a Diverse Test Set. J. Chem. Inf. Model. 49, 1079–1093.
doi:10.1021/ci9000053

Cho, H., Lee, E. K., and Choi, I. S. (2020). Layer-wise Relevance Propagation of
InteractionNet Explains Protein-Ligand Interactions at the Atom Level. Sci.
Rep. 10, 21155–21211. doi:10.1038/s41598-020-78169-6

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv
preprint arXiv:1409.1259.

Christensen, A. S., Sirumalla, S. K., Qiao, Z., O’Connor, M. B., Smith, D. G. A.,
Ding, F., et al. (2021). OrbNet Denali: A Machine Learning Potential for
Biological and Organic Chemistry with Semi-empirical Cost and DFT
Accuracy. J. Chem. Phys. 155, 204103. doi:10.1063/5.0061990

Chuang, K. V., Gunsalus, L. M., and Keiser, M. J. (2020). Learning Molecular
Representations for Medicinal Chemistry. J. Med. Chem. 63, 8705–8722. doi:10.
1021/acs.jmedchem.0c00385

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:
1412.3555.

Chupakhin, V., Marcou, G., Gaspar, H., and Varnek, A. (2014). Simple Ligand-
Receptor Interaction Descriptor (SILIRID) for Alignment-free Binding Site
Comparison. Comput. Struct. Biotechnol. J. 10, 33–37. doi:10.1016/j.csbj.2014.
05.004

Clark, J. J., Benson, M. L., Smith, R. D., and Carlson, H. A. (2019). Inherent
versus Induced Protein Flexibility: Comparisons within and between Apo and
Holo Structures. PLOS Comput. Biol. 15, e1006705. doi:10.1371/journal.pcbi.
1006705

Clark, J. J., Orban, Z. J., and Carlson, H. A. (2020). Predicting Binding Sites from
Unbound versus Bound Protein Structures. Sci. Rep. 10, 15856–15918. doi:10.
1038/s41598-020-72906-7

Clark, R. D., Strizhev, A., Leonard, J. M., Blake, J. F., and Matthew, J. B. (2002).
Consensus Scoring for Ligand/protein Interactions. J. Mol. Graph Model. 20,
281–295. doi:10.1016/s1093-3263(01)00125-5

Coley, C. W., Jin, W., Rogers, L., Jamison, T. F., Jaakkola, T. S., Green, W. H., et al.
(2019). A Graph-Convolutional Neural Network Model for the Prediction of
Chemical Reactivity. Chem. Sci. 10, 370–377. doi:10.1039/c8sc04228d

Cortes, C., and Vapnik, V. (1995). Support-vector Networks. Mach. Learn. 20,
273–297. doi:10.1007/bf00994018

Cournia, Z., Allen, B., and Sherman, W. (2017). Relative Binding Free Energy
Calculations in Drug Discovery: Recent Advances and Practical Considerations.
J. Chem. Inf. Model. 57, 2911–2937. doi:10.1021/acs.jcim.7b00564

Da, C., and Kireev, D. (2014). Structural Protein-Ligand Interaction Fingerprints
(SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study.
J. Chem. Inf. Model. 54, 2555–2561. doi:10.1021/ci500319f

Dahl, G. E., Jaitly, N., and Salakhutdinov, R. (2014). Multi-task Neural Networks
for QSAR Predictions. arXiv preprint arXiv:1406.1231.

Damm-Ganamet, K. L., Smith, R. D., Dunbar, J. B., Stuckey, J. A., and Carlson, H.
A. (2013). CSAR Benchmark Exercise 2011-2012: Evaluation of Results from
Docking and Relative Ranking of Blinded Congeneric Series. J. Chem. Inf.
Model. 53, 1853–1870. doi:10.1021/ci400025f

Darby, J. F., Hopkins, A. P., Shimizu, S., Roberts, S. M., Brannigan, J. A.,
Turkenburg, J. P., et al. (2019). Water Networks Can Determine the Affinity
of Ligand Binding to Proteins. J. Am. Chem. Soc. 141, 15818–15826. doi:10.
1021/jacs.9b06275

Das, S., Krein, M. P., and Breneman, C. M. (2010). Binding Affinity Prediction with
Property-Encoded Shape Distribution Signatures. J. Chem. Inf. Model. 50,
298–308. doi:10.1021/ci9004139

David, L., Thakkar, A., Mercado, R., and Engkvist, O. (2020). Molecular
Representations in AI-Driven Drug Discovery: A Review and Practical
Guide. J. Cheminform 12, 1–22. doi:10.1186/s13321-020-00460-5

de Magalhães, C. S., Almeida, D. M., Barbosa, H. J. C., and Dardenne, L. E.
(2014). A Dynamic Niching Genetic Algorithm Strategy for Docking
Highly Flexible Ligands. Inf. Sci. 289, 206–224. doi:10.1016/j.ins.2014.
08.002

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598322

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1093/bioinformatics/btz665
https://doi.org/10.1021/acs.jcim.1c00096
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1021/acs.jmedchem.0c01516
https://doi.org/10.1021/acs.jmedchem.0c01516
https://doi.org/10.1039/9781788016841
https://doi.org/10.1021/acs.jmedchem.9b02147
https://doi.org/10.1021/acs.jmedchem.9b02147
https://doi.org/10.1371/journal.pcbi.1005929
https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1021/acs.jcim.5b00523
https://doi.org/10.1073/pnas.0610494104
https://doi.org/10.1073/pnas.0610494104
https://doi.org/10.1021/jm990352k
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1371/journal.pone.0220113
https://doi.org/10.1371/journal.pone.0220113
https://doi.org/10.1186/s13321-019-0373-4
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2174/1386207013330670
https://doi.org/10.1021/ci9000053
https://doi.org/10.1038/s41598-020-78169-6
https://doi.org/10.1063/5.0061990
https://doi.org/10.1021/acs.jmedchem.0c00385
https://doi.org/10.1021/acs.jmedchem.0c00385
https://doi.org/10.1016/j.csbj.2014.05.004
https://doi.org/10.1016/j.csbj.2014.05.004
https://doi.org/10.1371/journal.pcbi.1006705
https://doi.org/10.1371/journal.pcbi.1006705
https://doi.org/10.1038/s41598-020-72906-7
https://doi.org/10.1038/s41598-020-72906-7
https://doi.org/10.1016/s1093-3263(01)00125-5
https://doi.org/10.1039/c8sc04228d
https://doi.org/10.1007/bf00994018
https://doi.org/10.1021/acs.jcim.7b00564
https://doi.org/10.1021/ci500319f
https://doi.org/10.1021/ci400025f
https://doi.org/10.1021/jacs.9b06275
https://doi.org/10.1021/jacs.9b06275
https://doi.org/10.1021/ci9004139
https://doi.org/10.1186/s13321-020-00460-5
https://doi.org/10.1016/j.ins.2014.08.002
https://doi.org/10.1016/j.ins.2014.08.002
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


De, S., Bartók, A. P., Csányi, G., and Ceriotti, M. (2016). Comparing Molecules and
Solids across Structural and Alchemical Space. Phys. Chem. Chem. Phys. 18,
13754–13769. doi:10.1039/c6cp00415f

Debroise, T., Shakhnovich, E. I., and Chéron, N. (2017a). A Hybrid Knowledge-
Based and Empirical Scoring Function for Protein-Ligand Interaction:
SMoG2016. J. Chem. Inf. Model. 57, 584–593. doi:10.1021/acs.jcim.6b00610

Debroise, T., Shakhnovich, E. I., and Chéron, N. (2017b). A Hybrid Knowledge-
Based and Empirical Scoring Function for Protein-Ligand Interaction:
SMoG2016. J. Chem. Inf. Model. 57, 584–593. doi:10.1021/acs.jcim.6b00610

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. Adv. Neural Inf.
Process Syst. 29, 3844–3852.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, K., and Li Fei-Fei, L. (2009).
“ImageNet: A Large-Scale Hierarchical Image Database,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition (IEEE), 248–255.
doi:10.1109/cvpr.2009.5206848

Deng, W., Breneman, C., and Embrechts, M. J. (2004). Predicting Protein-Ligand
Binding Affinities Using Novel Geometrical Descriptors andMachine-Learning
Methods. J. Chem. Inf. Comput. Sci. 44, 699–703. doi:10.1021/ci034246+

Deng, Z., Chuaqui, C., and Singh, J. (2003). Structural Interaction Fingerprint
(SIFt): a Novel Method for Analyzing Three-Dimensional Protein-Ligand
Binding Interactions. J. Med. Chem. 47, 337–344. doi:10.1021/jm030331x

DesJarlais, R. L., Sheridan, R. P., Seibel, G. L., Dixon, J. S., Kuntz, I. D., and
Venkataraghavan, R. (1988). Using Shape Complementarity as an Initial Screen
in Designing Ligands for a Receptor Binding Site of Known Three-Dimensional
Structure. J. Med. Chem. 31, 722–729. doi:10.1021/jm00399a006

DeWitte, R. S., Ishchenko, A. V., and Shakhnovich, E. I. (1997). SMoG: De Novo
Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 2.
Case Studies in Molecular Design. J. Am. Chem. Soc. 119, 4608–4617. doi:10.
1021/ja963689+

DeWitte, R. S., and Shakhnovich, E. I. (1996). SMoG: De Novo Design Method
Based on Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology
and Supporting Evidence. J. Am. Chem. Soc. 118, 11733–11744. doi:10.1021/
ja960751u

Dickson, M., and Gagnon, J. P. (2004). Key Factors in the Rising Cost of New Drug
Discovery and Development. Nat. Rev. Drug Discov. 3, 417–429. doi:10.1038/
nrd1382

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. (2016). Innovation in the
Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 47,
20–33. doi:10.1016/j.jhealeco.2016.01.012

Dittrich, J., Schmidt, D., Pfleger, C., and Gohlke, H. (2018). Converging a
Knowledge-Based Scoring Function: DrugScore2018. J. Chem. Inf. Model.
59, 509–521. doi:10.1021/acs.jcim.8b00582

Dong, L., Qu, X., Zhao, Y., andWang, B. (2021). Prediction of Binding Free Energy
of Protein-Ligand Complexes with a Hybrid Molecular Mechanics/Generalized
Born Surface Area and Machine Learning Method. ACS Omega 6,
32938–32947. doi:10.1021/acsomega.1c04996

Drews, J. (2000). Drug Discovery: AHistorical Perspective. Science 287, 1960–1964.
doi:10.1126/science.287.5460.1960

Druchok, M., Yarish, D., Garkot, S., Nikolaienko, T., and Gurbych, O. (2021).
Ensembling Machine Learning Models to Boost Molecular Affinity Prediction.
Comput. Biol. Chem. 93, 107529. doi:10.1016/j.compbiolchem.2021.107529

Dumoulin, V., and Visin, F. (2016). A Guide to Convolution Arithmetic for Deep
Learning. arXiv preprint arXiv:1603.07285.

Dunbar, J. B., Smith, R. D., Damm-Ganamet, K. L., Ahmed, A., Esposito, E. X.,
Delproposto, J., et al. (2013). CSAR Data Set Release 2012: Ligands, Affinities,
Complexes, and Docking Decoys. J. Chem. Inf. Model. 53, 1842–1852. doi:10.
1021/ci4000486

Dunbar, J. B., Smith, R. D., Yang, C. Y., Ung, P. M., Lexa, K. W., Khazanov, N. A.,
et al. (2011). CSAR Benchmark Exercise of 2010: Selection of the Protein-
Ligand Complexes. J. Chem. Inf. Model. 51, 2036–2046. doi:10.1021/ci200082t

Durrant, J. D., and McCammon, J. A. (2011a). BINANA: A Novel Algorithm for
Ligand-Binding Characterization. J. Mol. Graph Model. 29, 888–893. doi:10.
1016/j.jmgm.2011.01.004

Durrant, J. D., and McCammon, J. A. (2011b). NNScore 2.0: a Neural-Network
Receptor-Ligand Scoring Function. J. Chem. Inf. Model. 51, 2897–2903. doi:10.
1021/ci2003889

Durrant, J. D., and McCammon, J. A. (2010). NNScore: a Neural-Network-Based
Scoring Function for the Characterization of Protein-Ligand Complexes.
J. Chem. Inf. Model. 50, 1865–1871. doi:10.1021/ci100244v

Efron, B. (1992). “Bootstrap Methods: Another Look at the Jackknife,” in Springer
Series in Statistics (New York: Springer), 569–593. doi:10.1007/978-1-4612-
4380-9_41

Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997).
Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring
Function to Estimate the Binding Affinity of Ligands in Receptor Complexes.
J. Comput. Aided Mol. Des. 11, 425–445. doi:10.1023/a:1007996124545

Ericksen, S. S., Wu, H., Zhang, H., Michael, L. A., Newton, M. A., Hoffmann, F. M.,
et al. (2017). Machine Learning Consensus Scoring Improves Performance
across Targets in Structure-Based Virtual Screening. J. Chem. Inf. Model. 57,
1579–1590. doi:10.1021/acs.jcim.7b00153

Ewing, T. J., Makino, S., Skillman, A. G., and Kuntz, I. D. (2001). DOCK 4.0: Search
Strategies for Automated Molecular Docking of Flexible Molecule Databases.
J. Comput. Aided Mol. Des. 15, 411–428. doi:10.1023/a:1011115820450

Feinberg, E. N., Sur, D., Wu, Z., Husic, B. E., Mai, H., Li, Y., et al. (2018).
PotentialNet for Molecular Property Prediction. ACS Cent. Sci. 4, 1520–1530.
doi:10.1021/acscentsci.8b00507

Feng, Q., Dueva, E., Cherkasov, A., and Ester, M. (2018). Padme: A Deep Learning-
Based Framework for Drug-Target Interaction Prediction. arXiv preprint arXiv:
1807.09741.

Francoeur, P. G., Masuda, T., Sunseri, J., Jia, A., Iovanisci, R. B., Snyder, I., et al.
(2020). Three-dimensional Convolutional Neural Networks and a Cross-
Docked Data Set for Structure-Based Drug Design. J. Chem. Inf. Model. 60,
4200–4215. doi:10.1021/acs.jcim.0c00411

Freund, Y., and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 119–139.
doi:10.1006/jcss.1997.1504

Friedman, J. H. (2002). Stochastic Gradient Boosting. Comput. Statistics Data
Analysis 38, 367–378. doi:10.1016/s0167-9473(01)00065-2

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T.,
et al. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring.
1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749.
doi:10.1021/jm0306430

Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R.,
Halgren, T. A., et al. (2006). Extra Precision Glide: Docking and Scoring
Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand
Complexes. J. Med. Chem. 49, 6177–6196. doi:10.1021/jm051256o

Fukushima, K. (1980). Neocognitron: a Self Organizing Neural Network Model for
a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol.
Cybern. 36, 193–202. doi:10.1007/bf00344251

Gabel, J., Desaphy, J., and Rognan, D. (2014). Beware of Machine Learning-Based
Scoring Functions-On the Danger of Developing Black Boxes. J. Chem. Inf.
Model. 54, 2807–2815. doi:10.1021/ci500406k

Gaieb, Z., Liu, S., Gathiaka, S., Chiu, M., Yang, H., Shao, C., et al. (2017). D3R
Grand Challenge 2: Blind Prediction of Protein-Ligand Poses, Affinity
Rankings, and Relative Binding Free Energies. J. Comput. Aided Mol. Des.
32, 1–20. doi:10.1007/s10822-017-0088-4

Gaieb, Z., Parks, C. D., Chiu, M., Yang, H., Shao, C., Walters, W. P., et al.
(2019). D3R Grand Challenge 3: Blind Prediction of Protein-Ligand Poses
and Affinity Rankings. J. Comput. Aided Mol. Des. 33, 1–18. doi:10.1007/
s10822-018-0180-4

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in Proceedings of The
33rd International Conference on Machine Learning, Proceedings of Machine
Learning Research 48:1050-1059. Available from https://proceedings.mlr.press/
v48/gal16.html..

Gao, X., Ramezanghorbani, F., Isayev, O., Smith, J. S., and Roitberg, A. E. (2020).
TorchANI: A Free and Open Source PyTorch-Based Deep Learning
Implementation of the ANI Neural Network Potentials. J. Chem. Inf. Model.
60, 3408–3415. doi:10.1021/acs.jcim.0c00451

Gathiaka, S., Liu, S., Chiu, M., Yang, H., Stuckey, J. A., Kang, Y. N., et al. (2016).
D3R Grand Challenge 2015: Evaluation of Protein-Ligand Pose and Affinity
Predictions. J. Comput. Aided Mol. Des. 30, 651–668. doi:10.1007/s10822-016-
9946-8

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598323

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1039/c6cp00415f
https://doi.org/10.1021/acs.jcim.6b00610
https://doi.org/10.1021/acs.jcim.6b00610
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1021/ci034246+
https://doi.org/10.1021/jm030331x
https://doi.org/10.1021/jm00399a006
https://doi.org/10.1021/ja963689+
https://doi.org/10.1021/ja963689+
https://doi.org/10.1021/ja960751u
https://doi.org/10.1021/ja960751u
https://doi.org/10.1038/nrd1382
https://doi.org/10.1038/nrd1382
https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/10.1021/acs.jcim.8b00582
https://doi.org/10.1021/acsomega.1c04996
https://doi.org/10.1126/science.287.5460.1960
https://doi.org/10.1016/j.compbiolchem.2021.107529
https://doi.org/10.1021/ci4000486
https://doi.org/10.1021/ci4000486
https://doi.org/10.1021/ci200082t
https://doi.org/10.1016/j.jmgm.2011.01.004
https://doi.org/10.1016/j.jmgm.2011.01.004
https://doi.org/10.1021/ci2003889
https://doi.org/10.1021/ci2003889
https://doi.org/10.1021/ci100244v
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1023/a:1007996124545
https://doi.org/10.1021/acs.jcim.7b00153
https://doi.org/10.1023/a:1011115820450
https://doi.org/10.1021/acscentsci.8b00507
https://doi.org/10.1021/acs.jcim.0c00411
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm051256o
https://doi.org/10.1007/bf00344251
https://doi.org/10.1021/ci500406k
https://doi.org/10.1007/s10822-017-0088-4
https://doi.org/10.1007/s10822-018-0180-4
https://doi.org/10.1007/s10822-018-0180-4
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1007/s10822-016-9946-8
https://doi.org/10.1007/s10822-016-9946-8
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., et al. (2021).
Utilizing Graph Machine Learning within Drug Discovery and Development.
Brief. Bioinform. 22. doi:10.1093/bib/bbab159

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2011). ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery.
Nucleic Acids Res. 40, D1100–D1107. doi:10.1093/nar/gkr777

Genheden, S., and Ryde, U. (2015). The MM/PBSA and MM/GBSA Methods to
Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 10, 449–461.
doi:10.1517/17460441.2015.1032936

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Sebastapol, CA: O’Reilly Media.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
“Neural Message Passing for Quantum Chemistry,” in International conference
on machine learning (PMLR), 1263–1272.

Gilson, M. K., and Honig, B. H. (1986). The Dielectric Constant of a Folded
Protein. Biopolymers 25, 2097–2119. doi:10.1002/bip.360251106

Gohlke, H., Hendlich, M., and Klebe, G. (2000). Knowledge-based Scoring
Function to Predict Protein-Ligand Interactions. J. Mol. Biol. 295, 337–356.
doi:10.1006/jmbi.1999.3371

Gomes, J., Ramsundar, B., Feinberg, E. N., and Pande, V. S. (2017). Atomic
Convolutional Networks for Predicting Protein-Ligand Binding Affinity. arXiv
preprint arXiv:1703.10603.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT press.
Goodsell, D. S., Autin, L., and Olson, A. J. (2019a). Illustrate: Software for

Biomolecular Illustration. Structure 27, 1716–e1. doi:10.1016/j.str.2019.08.011
Goodsell, D. S., and Olson, A. J. (1990). Automated Docking of Substrates to

Proteins by Simulated Annealing. Proteins 8, 195–202. doi:10.1002/prot.
340080302

Goodsell, D. S., Zardecki, C., Di Costanzo, L., Duarte, J. M., Hudson, B. P.,
Persikova, I., et al. (2019b). RCSB Protein Data Bank: Enabling Biomedical
Research and Drug Discovery. Protein Sci. 29, 52–65. doi:10.1002/pro.3730

Graves, A. (2012). Supervised Sequence Labelling. Springer Berlin Heidelberg, 5–13.
chap. Supervised Sequence Labelling. doi:10.1007/978-3-642-24797-
2_2Supervised Sequence Labelling

Guedes, I. A., Pereira, F. S. S., and Dardenne, L. E. (2018). Empirical Scoring
Functions for Structure-Based Virtual Screening: Applications, Critical Aspects,
and Challenges. Front. Pharmacol. 9, 1089. doi:10.3389/fphar.2018.01089

Guedes, I. A., Barreto, A., Marinho, D., Krempser, E., Kuenemann, M. A.,
Sperandio, O., et al. (2021a). New Machine Learning and Physics-Based
Scoring Functions for Drug Discovery. Sci. Rep. 11, 1–19. doi:10.1038/
s41598-021-82410-1

Guedes, I. A., Barreto, A. M. S., Marinho, D., Krempser, E., Kuenemann, M. A.,
Sperandio, O., et al. (2021b). NewMachine Learning and Physics-Based Scoring
Functions for Drug Discovery. Sci. Rep. 11, 1–19. doi:10.1038/s41598-021-
82410-1

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G. Z. (2019).
XAI-explainable Artificial Intelligence. Sci. Robot. 4. doi:10.1126/scirobotics.
aay7120

Hahn, D. F., Bayly, C. I., Macdonald, H. E. B., Chodera, J. D., Mey, A. S.,
Mobley, D. L., et al. (2021). Best Practices for Constructing, Preparing, and
Evaluating Protein-Ligand Binding Affinity Benchmarks. arXiv preprint
arXiv:2105.06222.

Hansen, L. K., and Salamon, P. (1990). Neural Network Ensembles. IEEE Trans.
Pattern Anal. Mach. Intell. 12, 993–1001. doi:10.1109/34.58871

Hartshorn, M. J., Verdonk, M. L., Chessari, G., Brewerton, S. C., Mooij, W. T.,
Mortenson, P. N., et al. (2007). Diverse, High-Quality Test Set for the
Validation of Protein-Ligand Docking Performance. J. Med. Chem. 50,
726–741. doi:10.1021/jm061277y

Hassan, M., Mogollon, D. C., Fuentes, O., and sirimulla, s. (2018). DLSCORE: A
Deep Learning Model for Predicting Protein-Ligand Binding Affinities.
ChemRxiv. doi:10.26434/chemrxiv.6159143.v1

Hassan-Harrirou, H., Zhang, C., and Lemmin, T. (2020). RosENet: Improving
Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with
an Ensemble of 3D Convolutional Neural Networks. J. Chem. Inf. Model. 60,
2791–2802. doi:10.1021/acs.jcim.0c00075

Hauser, K., Negron, C., Albanese, S. K., Ray, S., Steinbrecher, T., Abel, R., et al.
(2018). Predicting Resistance of Clinical Abl Mutations to Targeted Kinase

Inhibitors Using Alchemical Free-Energy Calculations. Commun. Biol. 1,
70–14. doi:10.1038/s42003-018-0075-x

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE), 770–778. doi:10.1109/cvpr.2016.90

Hingerty, B. E., Ritchie, R. H., Ferrell, T. L., and Turner, J. E. (1985). Dielectric
Effects in Biopolymers: The Theory of Ionic Saturation Revisited. Biopolymers
24, 427–439. doi:10.1002/bip.360240302

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hochuli, J., Helbling, A., Skaist, T., Ragoza, M., and Koes, D. R. (2018). Visualizing
Convolutional Neural Network Protein-Ligand Scoring. J. Mol. Graph Model.
84, 96–108. doi:10.1016/j.jmgm.2018.06.005

Holderbach, S., Adam, L., Jayaram, B., Wade, R. C., and Mukherjee, G. (2020).
RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified
Physicochemical Features. Front. Mol. Biosci. 7, 601065. doi:10.3389/fmolb.
2020.601065

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer Feedforward
Networks Are Universal Approximators. Neural Netw. 2, 359–366. doi:10.
1016/0893-6080(89)90020-8

Hu, L., Benson, M. L., Smith, R. D., Lerner, M. G., and Carlson, H. A. (2005).
Binding MOAD (Mother of All Databases). Proteins 60, 333–340. doi:10.1002/
prot.20512

Huang, D. Z., Baber, J. C., and Bahmanyar, S. S. (2021a). The Challenges of
Generalizability in Artificial Intelligence for ADME/Tox Endpoint and Activity
Prediction. Expert Opin. Drug Discov. 16, 1045–1056. doi:10.1080/17460441.
2021.1901685

Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., et al. (2021b).
Therapeutics Data Commons: Machine Learning Datasets and Tasks for
Therapeutics. arXiv preprint arXiv:2102.09548.

Huang, S. Y., Grinter, S. Z., and Zou, X. (2010). Scoring Functions and Their
Evaluation Methods for Protein-Ligand Docking: Recent Advances and Future
Directions. Phys. Chem. Chem. Phys. 12, 12899–12908. doi:10.1039/c0cp00151a

Huang, S. Y., and Zou, X. (2006a). An Iterative Knowledge-Based Scoring Function
to Predict Protein-Ligand Interactions: I. Derivation of Interaction Potentials.
J. Comput. Chem. 27, 1866–1875. doi:10.1002/jcc.20504

Huang, S. Y., and Zou, X. (2006b). An Iterative Knowledge-Based Scoring Function
to Predict Protein-Ligand Interactions: II. Validation of the Scoring Function.
J. Comput. Chem. 27, 1876–1882. doi:10.1002/jcc.20505

Huang, S. Y., and Zou, X. (2010). Inclusion of Solvation and Entropy in the
Knowledge-Based Scoring Function for Protein-Ligand Interactions. J. Chem.
Inf. Model. 50, 262–273. doi:10.1021/ci9002987

Hubel, D. H. (1959). Single Unit Activity in Striate Cortex of Unrestrained Cats.
J. Physiol. 147, 226–238. doi:10.1113/jphysiol.1959.sp006238

Hubel, D. H., and Wiesel, T. N. (1959). Receptive Fields of Single Neurones in the
Cat’s Striate Cortex. J. Physiol. 148, 574–591. doi:10.1113/jphysiol.1959.
sp006308

Huey, R., Morris, G. M., Olson, A. J., and Goodsell, D. S. (2007). A Semiempirical
Free Energy Force Field with Charge-Based Desolvation. J. Comput. Chem. 28,
1145–1152. doi:10.1002/jcc.20634

Imrie, F., Bradley, A. R., van der Schaar, M., and Deane, C. M. (2018). Protein
Family-specific Models Using Deep Neural Networks and Transfer Learning
Improve Virtual Screening and Highlight the Need for More Data. J. Chem. Inf.
Model. 58, 2319–2330. doi:10.1021/acs.jcim.8b00350

Jasper, J. B., Humbeck, L., Brinkjost, T., and Koch, O. (2018). A Novel Interaction
Fingerprint Derived from Per Atom Score Contributions: Exhaustive
Evaluation of Interaction Fingerprint Performance in Docking Based Virtual
Screening. J. Cheminform 10, 15–13. doi:10.1186/s13321-018-0264-0

Ji, Y., Zhang, L., Wu, J., Wu, B., Huang, L.-K., Xu, T., et al. (2022). DrugOOD: Out-
Of-Distribution (OOD) Dataset Curator and Benchmark for AI-Aided Drug
Discovery–A Focus on Affinity Prediction Problems with Noise Annotations.
arXiv preprint arXiv:2201.09637.

Jiang, D., Hsieh, C. Y., Wu, Z., Kang, Y., Wang, J., Wang, E., et al. (2021).
InteractionGraphNet: A Novel and Efficient Deep Graph Representation
Learning Framework for Accurate Protein-Ligand Interaction Predictions.
J. Med. Chem. 64, 18209–18232. doi:10.1021/acs.jmedchem.1c01830

Jiang, H., Fan, M., Wang, J., Sarma, A., Mohanty, S., Dokholyan, N. V., et al.
(2020a). Guiding Conventional Protein-Ligand Docking Software with

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598324

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1093/bib/bbab159
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1002/bip.360251106
https://doi.org/10.1006/jmbi.1999.3371
https://doi.org/10.1016/j.str.2019.08.011
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1002/pro.3730
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.3389/fphar.2018.01089
https://doi.org/10.1038/s41598-021-82410-1
https://doi.org/10.1038/s41598-021-82410-1
https://doi.org/10.1038/s41598-021-82410-1
https://doi.org/10.1038/s41598-021-82410-1
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1109/34.58871
https://doi.org/10.1021/jm061277y
https://doi.org/10.26434/chemrxiv.6159143.v1
https://doi.org/10.1021/acs.jcim.0c00075
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1002/bip.360240302
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.jmgm.2018.06.005
https://doi.org/10.3389/fmolb.2020.601065
https://doi.org/10.3389/fmolb.2020.601065
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1002/prot.20512
https://doi.org/10.1002/prot.20512
https://doi.org/10.1080/17460441.2021.1901685
https://doi.org/10.1080/17460441.2021.1901685
https://doi.org/10.1039/c0cp00151a
https://doi.org/10.1002/jcc.20504
https://doi.org/10.1002/jcc.20505
https://doi.org/10.1021/ci9002987
https://doi.org/10.1113/jphysiol.1959.sp006238
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1002/jcc.20634
https://doi.org/10.1021/acs.jcim.8b00350
https://doi.org/10.1186/s13321-018-0264-0
https://doi.org/10.1021/acs.jmedchem.1c01830
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Convolutional Neural Networks. J. Chem. Inf. Model. 60, 4594–4602. doi:10.
1021/acs.jcim.0c00542

Jiang, M., Li, Z., Zhang, S., Wang, S., Wang, X., Yuan, Q., et al. (2020b). Drug-target
Affinity Prediction Using Graph Neural Network and Contact Maps. RSC Adv.
10, 20701–20712. doi:10.1039/d0ra02297g

Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., and De Fabritiis, G. (2017).
DeepSite: Protein-Binding Site Predictor Using 3D-Convolutional Neural
Networks. Bioinformatics 33, 3036–3042. doi:10.1093/bioinformatics/btx350

Jiménez, J., Škalič, M., Martínez-Rosell, G., and De Fabritiis, G. (2018). KDEEP:
Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional
Neural Networks. J. Chem. Inf. Model. 58, 287–296. doi:10.1021/acs.jcim.
7b00650

Jiménez-Luna, J., Pérez-Benito, L., Martínez-Rosell, G., Sciabola, S., Torella, R.,
Tresadern, G., et al. (2019). DeltaDelta Neural Networks for Lead Optimization
of Small Molecule Potency. Chem. Sci. 10, 10911–10918. doi:10.1039/
c9sc04606b

Jiménez-Luna, J., Skalic, M., Weskamp, N., and Schneider, G. (2021b). Coloring
Molecules with Explainable Artificial Intelligence for Preclinical Relevance
Assessment. J. Chem. Inf. Model. 61, 1083–1094. doi:10.1021/acs.jcim.0c01344

Jiménez-Luna, J., Grisoni, F., and Schneider, G. (2020). Drug Discovery with
Explainable Artificial Intelligence. Nat. Mach. Intell. 2, 573–584. doi:10.1038/
s42256-020-00236-4

Jiménez-Luna, J., Grisoni, F., Weskamp, N., and Schneider, G. (2021a). Artificial
Intelligence in Drug Discovery: Recent Advances and Future Perspectives.
Expert Opin. Drug Discov. 16, 949–959. doi:10.1080/17460441.2021.1909567

Jing, Y., Bian, Y., Hu, Z., Wang, L., and Xie, X. Q. (2018). Deep Learning for Drug
Design: An Artificial Intelligence Paradigm for Drug Discovery in the Big Data
Era. AAPS J. 20, 58–10. doi:10.1208/s12248-018-0210-0

Jones, D., Kim, H., Zhang, X., Zemla, A., Stevenson, G., Bennett, W. F. D., et al.
(2021). Improved Protein-Ligand Binding Affinity Prediction with Structure-
Based Deep Fusion Inference. J. Chem. Inf. Model. 61, 1583–1592. doi:10.1021/
acs.jcim.0c01306

Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997). Development
and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 267,
727–748. doi:10.1006/jmbi.1996.0897

Jones, G., Willett, P., and Glen, R. C. (1995). Molecular Recognition of Receptor
Sites Using a Genetic Algorithm with a Description of Desolvation. J. Mol. Biol.
245, 43–53. doi:10.1016/s0022-2836(95)80037-9

Jones-Hertzog, D. K., and Jorgensen, W. L. (1997). Binding Affinities for
Sulfonamide Inhibitors with Human Thrombin Using Monte Carlo
Simulations with a Linear Response Method. J. Med. Chem. 40, 1539–1549.
doi:10.1021/jm960684e

Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D. B., and
Blundell, T. L. (2017). Arpeggio: A Web Server for Calculating and Visualising
Interatomic Interactions in Protein Structures. J. Mol. Biol. 429, 365–371.
doi:10.1016/j.jmb.2016.12.004

Kadukova, M., and Grudinin, S. (2017). Convex-pl: a Novel Knowledge-Based
Potential for Protein-Ligand Interactions Deduced from Structural Databases
Using Convex Optimization. J. Comput. Aided Mol. Des. 31, 943–958. doi:10.
1007/s10822-017-0068-8

Kadukova, M., Machado, K. D. S., Chacón, P., and Grudinin, S. (2021). KORP-
PL: a Coarse-Grained Knowledge-Based Scoring Function for Protein-
Ligand Interactions. Bioinformatics 37, 943–950. doi:10.1093/
bioinformatics/btaa748

Karimi, M., Wu, D., Wang, Z., and Shen, Y. (2019). DeepAffinity: Interpretable
Deep Learning of Compound-Protein Affinity through Unified Recurrent and
Convolutional Neural Networks. Bioinformatics 35, 3329–3338. doi:10.1093/
bioinformatics/btz111

Karlov, D. S., Sosnin, S., Fedorov, M. V., and Popov, P. (2020). graphDelta: MPNN
Scoring Function for the Affinity Prediction of Protein-Ligand Complexes. ACS
Omega 5, 5150–5159. doi:10.1021/acsomega.9b04162

Ke, G., Meng, Q., Finley, T., Wang, T., Chen,W., Ma,W., et al. (2017). Lightgbm: A
Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process
Syst. 30.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular
Graph Convolutions: Moving beyond Fingerprints. J. Comput. Aided Mol. Des.
30, 595–608. doi:10.1007/s10822-016-9938-8

Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika 30, 81–93.
doi:10.1093/biomet/30.1-2.81

Kimber, T. B., Chen, Y., and Volkamer, A. (2021). Deep Learning in Virtual
Screening: Recent Applications and Developments. Int. J. Mol. Sci. 22, 4435.
doi:10.3390/ijms22094435

Kipf, T. N., and Welling, M. (2016). Semi-supervised Classification with Graph
Convolutional Networks. arXiv preprint arXiv:1609.02907.

Koes, D. R., Baumgartner, M. P., and Camacho, C. J. (2013). Lessons Learned in
Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise.
J. Chem. Inf. Model. 53, 1893–1904. doi:10.1021/ci300604z

Kramer, C., and Gedeck, P. (2010). Leave-cluster-out Cross-Validation Is
Appropriate for Scoring Functions Derived from Diverse Protein Data Sets.
J. Chem. Inf. Model. 50, 1961–1969. doi:10.1021/ci100264e

Kramer, C., Kalliokoski, T., Gedeck, P., and Vulpetti, A. (2012). The Experimental
Uncertainty of Heterogeneous Public K(i) Data. J. Med. Chem. 55, 5165–5173.
doi:10.1021/jm300131x

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification
with Deep Convolutional Neural Networks. Commun. ACM 60, 84–90. doi:10.
1145/3065386

Kuzminykh, D., Polykovskiy, D., Kadurin, A., Zhebrak, A., Baskov, I., Nikolenko,
S., et al. (2018). 3D Molecular Representations Based on the Wave Transform
for Convolutional Neural Networks. Mol. Pharm. 15, 4378–4385. doi:10.1021/
acs.molpharmaceut.7b01134

Kwon, Y., Shin, W. H., Ko, J., and Lee, J. (2020). AK-score: Accurate Protein-
Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional
Neural Networks. Int. J. Mol. Sci. 21, 8424. doi:10.3390/ijms21228424

Le Cun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., et al. (1989).
Handwritten Digit Recognition: Applications of Neural Network Chips and
Automatic Learning. IEEE Commun. Mag. 27, 41–46. doi:10.1109/35.41400

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based Learning
Applied to Document Recognition. Proc. IEEE 86, 2278–2324. doi:10.1109/5.
726791

Lenselink, E. B., ten Dijke, N., Bongers, B., Papadatos, G., van Vlijmen, H. W. T.,
Kowalczyk, W., et al. (2017). Beyond the Hype: Deep Neural Networks
Outperform Established Methods Using a ChEMBL Bioactivity Benchmark
Set. J. Cheminform 9, 45–14. doi:10.1186/s13321-017-0232-0

Li, H., Leung, K. S., Wong, M. H., and Ballester, P. J. (2015). Low-quality Structural
and Interaction Data Improves Binding Affinity Prediction via Random Forest.
Molecules 20, 10947–10962. doi:10.3390/molecules200610947

Li, H., Lu, G., Sze, K. H., Su, X., Chan, W. Y., and Leung, K. S. (2021a). Machine-
learning Scoring Functions Trained on Complexes Dissimilar to the Test Set
Already Outperform Classical Counterparts on a Blind Benchmark. Brief.
Bioinform. 22, bbab225. doi:10.1093/bib/bbab225

Li, H., Peng, J., Leung, Y., Leung, K. S., Wong, M. H., Lu, G., et al. (2018). The
Impact of Protein Structure and Sequence Similarity on the Accuracy of
Machine-Learning Scoring Functions for Binding Affinity Prediction.
Biomolecules 8, 12. doi:10.3390/biom8010012

Li, H., Peng, J., Sidorov, P., Leung, Y., Leung, K. S., Wong, M. H., et al. (2019a).
Classical Scoring Functions for Docking Are Unable to Exploit Large Volumes
of Structural and Interaction Data. Bioinformatics 35, 3989–3995. doi:10.1093/
bioinformatics/btz183

Li, H., Peng, J., Sidorov, P., Leung, Y., Leung, K. S., Wong, M. H., et al. (2019b).
Classical Scoring Functions for Docking Are Unable to Exploit Large Volumes
of Structural and Interaction Data. Bioinformatics 35, 3989–3995. doi:10.1093/
bioinformatics/btz183

Li, H., Sze, K.-H., Lu, G., and Ballester, P. J. (2020a). Machine-learning Scoring
Functions for Structure-Based Drug Lead Optimization. WIREs Comput. Mol.
Sci. 10, e1465. doi:10.1002/wcms.1465

Li, H., Sze, K.-H., Lu, G., and Ballester, P. J. (2021b). Machine-learning Scoring
Functions for Structure-Based Virtual Screening. WIREs Comput. Mol. Sci. 11,
e1478. doi:10.1002/wcms.1478

Li, L., Wang, B., and Meroueh, S. O. (2011). Support Vector Regression Scoring of
Receptor-Ligand Complexes for Rank-Ordering and Virtual Screening of
Chemical Libraries. J. Chem. Inf. Model. 51, 2132–2138. doi:10.1021/ci200078f

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., et al. (2020b).
PyTorch Distributed. Proc. VLDB Endow. 13, 3005–3018. doi:10.14778/
3415478.3415530

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598325

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1021/acs.jcim.0c00542
https://doi.org/10.1021/acs.jcim.0c00542
https://doi.org/10.1039/d0ra02297g
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1021/acs.jcim.7b00650
https://doi.org/10.1021/acs.jcim.7b00650
https://doi.org/10.1039/c9sc04606b
https://doi.org/10.1039/c9sc04606b
https://doi.org/10.1021/acs.jcim.0c01344
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1080/17460441.2021.1909567
https://doi.org/10.1208/s12248-018-0210-0
https://doi.org/10.1021/acs.jcim.0c01306
https://doi.org/10.1021/acs.jcim.0c01306
https://doi.org/10.1006/jmbi.1996.0897
https://doi.org/10.1016/s0022-2836(95)80037-9
https://doi.org/10.1021/jm960684e
https://doi.org/10.1016/j.jmb.2016.12.004
https://doi.org/10.1007/s10822-017-0068-8
https://doi.org/10.1007/s10822-017-0068-8
https://doi.org/10.1093/bioinformatics/btaa748
https://doi.org/10.1093/bioinformatics/btaa748
https://doi.org/10.1093/bioinformatics/btz111
https://doi.org/10.1093/bioinformatics/btz111
https://doi.org/10.1021/acsomega.9b04162
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.3390/ijms22094435
https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/ci100264e
https://doi.org/10.1021/jm300131x
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1021/acs.molpharmaceut.7b01134
https://doi.org/10.1021/acs.molpharmaceut.7b01134
https://doi.org/10.3390/ijms21228424
https://doi.org/10.1109/35.41400
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.3390/molecules200610947
https://doi.org/10.1093/bib/bbab225
https://doi.org/10.3390/biom8010012
https://doi.org/10.1093/bioinformatics/btz183
https://doi.org/10.1093/bioinformatics/btz183
https://doi.org/10.1093/bioinformatics/btz183
https://doi.org/10.1093/bioinformatics/btz183
https://doi.org/10.1002/wcms.1465
https://doi.org/10.1002/wcms.1478
https://doi.org/10.1021/ci200078f
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Li, S., Zhou, J., Xu, T., Huang, L.,Wang, F., Xiong, H., et al. (2021c). “Structure-aware
Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding
Affinity,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (ACM), 975–985. doi:10.1145/3447548.3467311

Li, Y., Han, L., Liu, Z., and Wang, R. (2014a). Comparative Assessment of Scoring
Functions on an Updated Benchmark: 2. Evaluation Methods and General
Results. J. Chem. Inf. Model. 54, 1717–1736. doi:10.1021/ci500081m

Li, Y., Liu, Z., Li, J., Han, L., Liu, J., Zhao, Z., et al. (2014b). Comparative
Assessment of Scoring Functions on an Updated Benchmark: 1.
Compilation of the Test Set. J. Chem. Inf. Model. 54, 1700–1716. doi:10.
1021/ci500080q

Li, Y., and Yang, J. (2017). Structural and Sequence Similarity Makes a
Significant Impact on Machine-Learning-Based Scoring Functions for
Protein-Ligand Interactions. J. Chem. Inf. Model. 57, 1007–1012. doi:10.
1021/acs.jcim.7b00049

Li, Y., Rezaei, M. A., Li, C., and Li, X. (2019c). “DeepAtom: A Framework for
Protein-Ligand Binding Affinity Prediction,” in 2019 IEEE International
Conference on Bioinformatics and Biomedicine (IEEE), 303–310. doi:10.1109/
bibm47256.2019.8982964

Lim, J., Ryu, S., Park, K., Choe, Y. J., Ham, J., and Kim, W. Y. (2019). Predicting
Drug-Target Interaction Using a Novel Graph Neural Network with 3D
Structure-Embedded Graph Representation. J. Chem. Inf. Model. 59,
3981–3988. doi:10.1021/acs.jcim.9b00387

Limongelli, V., Marinelli, L., Cosconati, S., La Motta, C., Sartini, S., Mugnaini, L.,
et al. (2012). Sampling Protein Motion and Solvent Effect during Ligand
Binding. Proc. Natl. Acad. Sci. U. S. A. 109, 1467–1472. doi:10.1073/pnas.
1112181108

Lipton, Z. C. (2018). The Mythos of Model Interpretability. Queue 16, 31–57.
doi:10.1145/3236386.3241340

Liu, J., and Wang, R. (2015). Classification of Current Scoring Functions. J. Chem.
Inf. Model. 55, 475–482. doi:10.1021/ci500731a

Liu, T., Lin, Y., Wen, X., Jorissen, R. N., and Gilson, M. K. (2007). BindingDB: A
Web-Accessible Database of Experimentally Determined Protein-Ligand
Binding Affinities. Nucleic Acids Res. 35, D198–D201. doi:10.1093/nar/
gkl999

Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., et al. (2014). PDB-wide Collection of
Binding Data: Current Status of the PDBbind Database. Bioinformatics 31,
405–412. doi:10.1093/bioinformatics/btu626

Liu, Z., Su, M., Han, L., Liu, J., Yang, Q., Li, Y., et al. (2017). Forging the Basis for
Developing Protein-Ligand Interaction Scoring Functions. Acc. Chem. Res. 50,
302–309. doi:10.1021/acs.accounts.6b00491

Lo, Y. C., Rensi, S. E., Torng, W., and Altman, R. B. (2018). Machine Learning in
Chemoinformatics and Drug Discovery. Drug Discov. Today 23, 1538–1546.
doi:10.1016/j.drudis.2018.05.010

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to
Attention-Based Neural Machine Translation. arXiv preprint arXiv:1508.04025.

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V. (2015). Deep Neural
Nets as a Method for Quantitative Structure-Activity Relationships. J. Chem.
Inf. Model. 55, 263–274. doi:10.1021/ci500747n

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). “Shufflenet V2: Practical
Guidelines for Efficient Cnn Architecture Design,” in Proceedings of the
European Conference on Computer Vision(Cham, Switzerland: ECCV),
116–131. doi:10.1007/978-3-030-01264-9_8

Macarron, R., Banks, M. N., Bojanic, D., Burns, D. J., Cirovic, D. A., Garyantes, T.,
et al. (2011). Impact of High-Throughput Screening in Biomedical Research.
Nat. Rev. Drug Discov. 10, 188–195. doi:10.1038/nrd3368

Marchese Robinson, R. L., Palczewska, A., Palczewski, J., and Kidley, N. (2017).
Comparison of the Predictive Performance and Interpretability of Random
Forest and Linear Models on Benchmark Data Sets. J. Chem. Inf. Model. 57,
1773–1792. doi:10.1021/acs.jcim.6b00753

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999). Boosting Algorithms as
Gradient Descent in Function Space. Proc. NIPS. 12, 512–518.

Mayr, L. M., and Bojanic, D. (2009). Novel Trends in High-Throughput Screening.
Curr. Opin. Pharmacol. 9, 580–588. doi:10.1016/j.coph.2009.08.004

McCloskey, K., Taly, A., Monti, F., Brenner, M. P., and Colwell, L. J. (2019). Using
Attribution to Decode Binding Mechanism in Neural Network Models for
Chemistry. Proc. Natl. Acad. Sci. U. S. A. 116, 11624–11629. doi:10.1073/pnas.
1820657116

McCorkindale, W., Poelking, C., and Lee, A. A. (2020). Investigating 3D Atomic
Environments for Enhanced QSAR. arXiv preprint arXiv:2010.12857.

McCulloch, W. S., and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent
in Nervous Activity. Bull. Math. Biophysics 5, 115–133. doi:10.1007/bf02478259

McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., et al.
(2021). GNINA 1.0: Molecular Docking with Deep Learning. J. Cheminform 13,
1–20. doi:10.1186/s13321-021-00522-2

McNutt, A. T., and Koes, D. R. (2022). Improving ΔΔG Predictions with a
Multitask Convolutional Siamese Network. J. Chem. Inf. Model. 62,
1819–1829. doi:10.1021/acs.jcim.1c01497

Meli, R., Anighoro, A., Bodkin, M. J., Morris, G. M., and Biggin, P. C. (2021).
Learning Protein-Ligand Binding Affinity with Atomic Environment Vectors.
J. Cheminform 13, 1–19. doi:10.1186/s13321-021-00536-w

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., et al.
(2018). ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids
Res. 47, D930–D940. doi:10.1093/nar/gky1075

Meng, E. C., Shoichet, B. K., and Kuntz, I. D. (1992). Automated Docking with
Grid-Based Energy Evaluation. J. Comput. Chem. 13, 505–524. doi:10.1002/jcc.
540130412

Menke, J., and Koch, O. (2021). Using Domain-specific Fingerprints Generated
through Neural Networks to Enhance Ligand-Based Virtual Screening. J. Chem.
Inf. Model. 61, 664–675. doi:10.1021/acs.jcim.0c01208

Mey, A. S., Allen, B., Macdonald, H. E. B., Chodera, J. D., Kuhn, M., Michel, J., et al.
(2020). Best Practices for Alchemical Free Energy Calculations. arXiv preprint
arXiv:2008.03067.

Meyers, J., Fabian, B., and Brown, N. (2021). De Novo molecular Design and
Generative Models. Drug Discov. Today 26, 2707–2715. doi:10.1016/j.drudis.
2021.05.019

Mobley, D. L., Graves, A. P., Chodera, J. D., McReynolds, A. C., Shoichet, B. K., and
Dill, K. A. (2007). Predicting Absolute Ligand Binding Free Energies to a Simple
Model Site. J. Mol. Biol. 371, 1118–1134. doi:10.1016/j.jmb.2007.06.002

Moesser, M. A., Klein, D., Boyles, F., Deane, C. M., Baxter, A., and Morris, G. M.
(2022). Protein-ligand Interaction Graphs: Learning from Ligand-Shaped 3d
Interaction Graphs to Improve Binding Affinity Prediction. bioRxiv.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.
(2017). “Geometric Deep Learning on Graphs and Manifolds Using Mixture
Model CNNs,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (New York: IEEE), 5115. –5124. doi:10.1109/cvpr.2017.576

Monticelli, L., and Tieleman, D. P. (2012). “Force Fields for Classical Molecular
Dynamics,” in Methods in Molecular Biology (Totowa, NJ: Humana Press),
197–213. doi:10.1007/978-1-62703-017-5_8

Moon, S., Zhung, W., Yang, S., Lim, J., and Kim, W. Y. (2022). PIGNet: a Physics-
Informed Deep Learning Model toward Generalized Drug-Target Interaction
Predictions. Chem. Sci. 13, 3661–3673. doi:10.1039/d1sc06946b

Morris, G. M., Goodsell, D. S., Huey, R., and Olson, A. J. (1996). Distributed
Automated Docking of Flexible Ligands to Proteins: Parallel Applications of
AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304. doi:10.1007/
bf00124499

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S.,
et al. (2009). AutoDock4 and AutoDockTools4: Automated Docking with
Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–2791. doi:10.1002/
jcc.21256

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R.
K., et al. (1998). Automated Docking Using a Lamarckian Genetic
Algorithm and an Empirical Binding Free Energy Function. J. Comput.
Chem. 19, 1639–1662. doi:10.1002/(sici)1096-987x(19981115)19:14<1639::
aid-jcc10>3.0.co;2-b

Morrone, J. A., Weber, J. K., Huynh, T., Luo, H., and Cornell, W. D. (2020).
Combining Docking Pose Rank and Structure with Deep Learning Improves
Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
J. Chem. Inf. Model. 60, 4170–4179. doi:10.1021/acs.jcim.9b00927

Moustakas, D. T., Lang, P. T., Pegg, S., Pettersen, E., Kuntz, I. D., Brooijmans, N.,
et al. (2006). Development and Validation of a Modular, Extensible Docking
Program: Dock 5. J. Comput. Aided Mol. Des. 20, 601–619. doi:10.1007/s10822-
006-9060-4

Muegge, I., and Martin, Y. C. (1999). A General and Fast Scoring Function for
Protein-Ligand Interactions: a Simplified Potential Approach. J. Med. Chem. 42,
791–804. doi:10.1021/jm980536j

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598326

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1145/3447548.3467311
https://doi.org/10.1021/ci500081m
https://doi.org/10.1021/ci500080q
https://doi.org/10.1021/ci500080q
https://doi.org/10.1021/acs.jcim.7b00049
https://doi.org/10.1021/acs.jcim.7b00049
https://doi.org/10.1109/bibm47256.2019.8982964
https://doi.org/10.1109/bibm47256.2019.8982964
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1073/pnas.1112181108
https://doi.org/10.1073/pnas.1112181108
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1021/ci500731a
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1093/bioinformatics/btu626
https://doi.org/10.1021/acs.accounts.6b00491
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1021/ci500747n
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1038/nrd3368
https://doi.org/10.1021/acs.jcim.6b00753
https://doi.org/10.1016/j.coph.2009.08.004
https://doi.org/10.1073/pnas.1820657116
https://doi.org/10.1073/pnas.1820657116
https://doi.org/10.1007/bf02478259
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1021/acs.jcim.1c01497
https://doi.org/10.1186/s13321-021-00536-w
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1002/jcc.540130412
https://doi.org/10.1002/jcc.540130412
https://doi.org/10.1021/acs.jcim.0c01208
https://doi.org/10.1016/j.drudis.2021.05.019
https://doi.org/10.1016/j.drudis.2021.05.019
https://doi.org/10.1016/j.jmb.2007.06.002
https://doi.org/10.1109/cvpr.2017.576
https://doi.org/10.1007/978-1-62703-017-5_8
https://doi.org/10.1039/d1sc06946b
https://doi.org/10.1007/bf00124499
https://doi.org/10.1007/bf00124499
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1007/s10822-006-9060-4
https://doi.org/10.1007/s10822-006-9060-4
https://doi.org/10.1021/jm980536j
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Muegge, I. (2000). A Knowledge-Based Scoring Function for Protein-Ligand
Interactions: Probing the Reference State. Perspect. Drug Discov. 20, 99–114.
doi:10.1023/a:1008729005958

Muegge, I. (2001). Effect of Ligand Volume Correction on PMF Scoring. J. Comput.
Chem. 22, 418–425. doi:10.1002/1096-987x(200103)22:4<418:aid-jcc1012>3.0.
co;2-3

Muegge, I., and Rarey, M. (2001). “Small Molecule Docking and Scoring,” in
Reviews in Computational Chemistry (John Wiley & Sons), 1–60. doi:10.1002/
0471224413.ch1

Müller, S., Ackloo, S., Al Chawaf, A., Al-Lazikani, B., Antolin, A., Baell, J. B., et al.
(2022). Target 2035 - Update on the Quest for a Probe for Every Protein. RSC
Med. Chem. 13, 13–21. doi:10.1039/d1md00228g

Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov,
V., et al. (2020). QSAR without Borders. Chem. Soc. Rev. 49, 3525–3564. doi:10.
1039/d0cs00098a

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019).
Definitions, Methods, and Applications in Interpretable Machine Learning.
Proc. Natl. Acad. Sci. U. S. A. 116, 22071–22080. doi:10.1073/pnas.1900654116

Musil, F., Grisafi, A., Bartók, A. P., Ortner, C., Csányi, G., and Ceriotti, M. (2021).
Physics-inspired Structural Representations for Molecules and Materials.
Chem. Rev. 121, 9759–9815. doi:10.1021/acs.chemrev.1c00021

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory of
Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better
Benchmarking. J. Med. Chem. 55, 6582–6594. doi:10.1021/jm300687e

Narkhede, M. V., Bartakke, P. P., and Sutaone, M. S. (2021). A Review on Weight
Initialization Strategies for Neural Networks. Artif. Intell. Rev. 55, 291–322.
doi:10.1007/s10462-021-10033-z

Neudert, G., and Klebe, G. (2011). DSX: a Knowledge-Based Scoring Function for
the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 51,
2731–2745. doi:10.1021/ci200274q

Nguyen, D. D., and Wei, G. W. (2019). AGL-score: Algebraic Graph Learning
Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening.
J. Chem. Inf. Model. 59, 3291–3304. doi:10.1021/acs.jcim.9b00334

Nguyen, T., Le, H., Quinn, T. P., Nguyen, T., Le, T. D., and Venkatesh, S. (2020).
GraphDTA: Predicting Drug-Target Binding Affinity with Graph
Neural Networks. Bioinformatics 37, 1140–1147. doi:10.1093/
bioinformatics/btaa921

Nicholls, A. (2014). Confidence Limits, Error Bars and Method Comparison in
Molecular Modeling. Part 1: The Calculation of Confidence Intervals.
J. Comput. Aided Mol. Des. 28, 887–918. doi:10.1007/s10822-014-9753-z

Nicholls, A. (2016). Confidence Limits, Error Bars and Method Comparison in
Molecular Modeling. Part 2: Comparing Methods. J. Comput. Aided Mol. Des.
30, 103–126. doi:10.1007/s10822-016-9904-5

Nogueira, M. S., and Koch, O. (2019). The Development of Target-specific
Machine Learning Models as Scoring Functions for Docking-Based Target
Prediction. J. Chem. Inf. Model. 59, 1238–1252. doi:10.1021/acs.jcim.
8b00773

Öztürk, H., Özgür, A., and Ozkirimli, E. (2018). DeepDTA: Deep Drug-Target
Binding Affinity Prediction. Bioinformatics 34, i821–i829. doi:10.1093/
bioinformatics/bty593

Palazzesi, F., and Pozzan, A. (2022). Deep Learning Applied to Ligand-Based. Artif.
Intell. Drug Des., 273–299. doi:10.1007/978-1-0716-1787-8_12

Pan, S. J., and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/tkde.2009.191

Pan, X., Wang, H., Zhang, Y., Wang, X., Li, C., Ji, C., et al. (2022). Aa-score: a New
Scoring Function Based on Amino Acid-specific Interaction for Molecular
Docking. J. Chem. Inf. Model. doi:10.1021/acs.jcim.1c01537

Parks, C. D., Gaieb, Z., Chiu, M., Yang, H., Shao, C., Walters, W. P., et al. (2020).
D3R Grand Challenge 4: Blind Prediction of Protein-Ligand Poses, Affinity
Rankings, and Relative Binding Free Energies. J. Comput. Aided Mol. Des. 34,
99–119. doi:10.1007/s10822-020-00289-y

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An Imperative Style, High-Performance Deep Learning Library. Adv.
Neural Inf. Process Syst. 32, 8026–8037.

Patrick Walters, W. (2021). Comparing Classification Models-A Practical Tutorial.
J. Comput. Aided Mol. Des. 1. doi:10.1007/s10822-021-00417-2

Pearlman, D. A., and Charifson, P. S. (2001). Are Free Energy Calculations Useful
in Practice? a Comparison with Rapid Scoring Functions for the P38

MAP Kinase Protein System. J. Med. Chem. 44, 3417–3423. doi:10.1021/
jm0100279

Pérez-Nueno, V. I., Rabal, O., Borrell, J. I., and Teixidó, J. (2009). APIF: A New
Interaction Fingerprint Based on Atom Pairs and its Application to Virtual
Screening. J. Chem. Inf. Model. 49, 1245–1260. doi:10.1021/ci900043r

Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., and Unterthiner, T.
(2019). “Interpretable Deep Learning in Drug Discovery,” in Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning (Springer International
Publishing), 331–345. doi:10.1007/978-3-030-28954-6_18

Pu, L., Govindaraj, R. G., Lemoine, J. M., Wu, H. C., and Brylinski, M. (2019).
DeepDrug3D: Classification of Ligand-Binding Pockets in Proteins with a
Convolutional Neural Network. PLOS Comput. Biol. 15, e1006718. doi:10.
1371/journal.pcbi.1006718

Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R., and Miller, T. F. (2020).
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features. J. Chem. Phys. 153, 124111. doi:10.1063/5.
0021955

Qiu, T., Qiu, J., Feng, J., Wu, D., Yang, Y., Tang, K., et al. (2016). The Recent
Progress in Proteochemometric Modelling: Focusing on Target Descriptors,
Cross-Term Descriptors and Application Scope. Brief. Bioinform. 18, 125–136.
doi:10.1093/bib/bbw004

Quiroga, R., and Villarreal, M. A. (2016). Vinardo: A Scoring Function Based on
Autodock Vina Improves Scoring, Docking, and Virtual Screening. PloS one 11,
e0155183. doi:10.1371/journal.pone.0155183

Radifar, M., Yuniarti, N., and Istyastono, E. P. (2013). PyPLIF: Python-Based
Protein-Ligand Interaction Fingerprinting. Bioinformation 9, 325–328. doi:10.
6026/97320630009325

Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., and Koes, D. R. (2017a). Protein-
Ligand Scoring with Convolutional Neural Networks. J. Chem. Inf. Model. 57,
942–957. doi:10.1021/acs.jcim.6b00740

Ragoza, M., Turner, L., and Koes, D. R. (2017b). Ligand Pose Optimization with
Atomic Grid-Based Convolutional Neural Networks. arXiv preprint arXiv:
1710.07400.

Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R. P., et al. (2017).
Is Multitask Deep Learning Practical for Pharma? J. Chem. Inf. Model. 57,
2068–2076. doi:10.1021/acs.jcim.7b00146

Rännar, S., Geladi, P., Lindgren, F., and Wold, S. (1995). A PLS Kernel Algorithm
for Data Sets with Many Variables and Few Objects. Part II: Cross-Validation,
Missing Data and Examples. J. Chemom. 9, 459–470. doi:10.1002/cem.
1180090604

Rännar, S., Lindgren, F., Geladi, P., and Wold, S. (1994). A PLS Kernel Algorithm
for Data Sets with Many Variables and Fewer Objects. Part 1: Theory and
Algorithm. J. Chemom. 8, 111–125. doi:10.1002/cem.1180080204

Rasmussen, C. E. (2003). “Gaussian Processes in Machine Learning,” in Summer
School on Machine Learning (Springer), 63–71.

Reymond, J.-L., van Deursen, R., Blum, L. C., and Ruddigkeit, L. (2010). Chemical
Space as a Source for New Drugs. Med. Chem. Commun. 1, 30. doi:10.1039/
c0md00020e

Rifaioglu, A. S., Atas, H., Martin, M. J., Cetin-Atalay, R., Atalay, V., and Doğan, T.
(2019). Recent Applications of Deep Learning and Machine Intelligence on In
Silico Drug Discovery: Methods, Tools and Databases. Brief. Bioinform 20,
1878–1912. doi:10.1093/bib/bby061

Riniker, S., and Landrum, G. A. (2013a). Open-source Platform to Benchmark
Fingerprints for Ligand-Based Virtual Screening. J. Cheminform 5, 26–17.
doi:10.1186/1758-2946-5-26

Riniker, S., and Landrum, G. A. (2013b). Similarity Maps - a Visualization Strategy
for Molecular Fingerprints and Machine-Learning Methods. J. Cheminform 5,
43–47. doi:10.1186/1758-2946-5-43

Rodríguez-Pérez, R., and Bajorath, J. (2019). Interpretation of Compound Activity
Predictions from Complex Machine Learning Models Using Local
Approximations and Shapley Values. J. Med. Chem. 63, 8761–8777. doi:10.
1021/acs.jmedchem.9b01101

Rogers, D., and Hahn, M. (2010). Extended-connectivity Fingerprints. J. Chem. Inf.
Model. 50, 742–754. doi:10.1021/ci100050t

Roitberg, A., Pollert, T., Haurilet, M., Martin, M., and Stiefelhagen, R. (2019).
“Analysis of Deep Fusion Strategies for Multi-Modal Gesture Recognition,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (IEEE). 0–0. doi:10.1109/cvprw.2019.00029

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598327

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1023/a:1008729005958
https://doi.org/10.1002/1096-987x(200103)22:4<418:aid-jcc1012>3.0.co;2-3
https://doi.org/10.1002/1096-987x(200103)22:4<418:aid-jcc1012>3.0.co;2-3
https://doi.org/10.1002/0471224413.ch1
https://doi.org/10.1002/0471224413.ch1
https://doi.org/10.1039/d1md00228g
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1039/d0cs00098a
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1021/jm300687e
https://doi.org/10.1007/s10462-021-10033-z
https://doi.org/10.1021/ci200274q
https://doi.org/10.1021/acs.jcim.9b00334
https://doi.org/10.1093/bioinformatics/btaa921
https://doi.org/10.1093/bioinformatics/btaa921
https://doi.org/10.1007/s10822-014-9753-z
https://doi.org/10.1007/s10822-016-9904-5
https://doi.org/10.1021/acs.jcim.8b00773
https://doi.org/10.1021/acs.jcim.8b00773
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1007/978-1-0716-1787-8_12
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1021/acs.jcim.1c01537
https://doi.org/10.1007/s10822-020-00289-y
https://doi.org/10.1007/s10822-021-00417-2
https://doi.org/10.1021/jm0100279
https://doi.org/10.1021/jm0100279
https://doi.org/10.1021/ci900043r
https://doi.org/10.1007/978-3-030-28954-6_18
https://doi.org/10.1371/journal.pcbi.1006718
https://doi.org/10.1371/journal.pcbi.1006718
https://doi.org/10.1063/5.0021955
https://doi.org/10.1063/5.0021955
https://doi.org/10.1093/bib/bbw004
https://doi.org/10.1371/journal.pone.0155183
https://doi.org/10.6026/97320630009325
https://doi.org/10.6026/97320630009325
https://doi.org/10.1021/acs.jcim.6b00740
https://doi.org/10.1021/acs.jcim.7b00146
https://doi.org/10.1002/cem.1180090604
https://doi.org/10.1002/cem.1180090604
https://doi.org/10.1002/cem.1180080204
https://doi.org/10.1039/c0md00020e
https://doi.org/10.1039/c0md00020e
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1186/1758-2946-5-26
https://doi.org/10.1186/1758-2946-5-43
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1021/ci100050t
https://doi.org/10.1109/cvprw.2019.00029
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Rosenblatt, F. (1962). Perceptions and the Theory of Brain Mechanisms. Spartan
books.

Ross, G. A., Morris, G. M., and Biggin, P. C. (2013). One Size Does Not Fit All: The
Limits of Structure-Based Models in Drug Discovery. J. Chem. Theory Comput.
9, 4266–4274. doi:10.1021/ct4004228

Ross, G. A., Morris, G. M., and Biggin, P. C. (2012). Rapid and Accurate Prediction
and Scoring of Water Molecules in Protein Binding Sites. PLoS ONE 7, e32036.
doi:10.1371/journal.pone.0032036

Rufa, D. A., Macdonald, H. E. B., Fass, J., Wieder, M., Grinaway, P. B., Roitberg, A.
E., et al. (2020). Towards Chemical Accuracy for Alchemical Free Energy
Calculations with Hybrid Physics-Based Machine Learning/molecular
Mechanics Potentials. BioRxiv.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
Representations by Back-Propagating Errors. Nature 323, 533–536. doi:10.
1038/323533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115,
211–252. doi:10.1007/s11263-015-0816-y

Ryu, S., Lim, J., Hong, S. H., and Kim, W. Y. (2018). Deeply Learning Molecular
Structure-Property Relationships Using Attention-And Gate-Augmented Graph
Convolutional Network. arXiv preprint arXiv:1805.10988.

Salt, D. W., Yildiz, N., Livingstone, D. J., and Tinsley, C. J. (1992). The Use of
Artificial Neural Networks in QSAR. Pestic. Sci. 36, 161–170. doi:10.1002/ps.
2780360212

Scantlebury, J., Brown, N., Von Delft, F., and Deane, C. M. (2020). Data Set
Augmentation Allows Deep Learning-Based Virtual Screening to Better
Generalize to Unseen Target Classes and Highlight Important Binding
Interactions. J. Chem. Inf. Model. 60, 3722–3730. doi:10.1021/acs.jcim.0c00263

Schäfer, M., Oeing, C. U., Rohm, M., Baysal-Temel, E., Lehmann, L. H., Bauer, R.,
et al. (2020). ’Corrigendum to "Ataxin-10 Is Part of a Cachexokine Cocktail
Triggering Cardiac Metabolic Dysfunction in Cancer Cachexia" [Molecular
Metabolism 5 (2) (2015) 67-78]’.Mol. Metab. 35, 100970. doi:10.1016/j.molmet.
2020.02.013

Schneider, G., and Clark, D. E. (2019). Automated De Novo Drug Design: Are We
Nearly There yet? Angew. Chem. Int. Ed. Engl. 58, 10792–10803. doi:10.1002/
anie.201814681

Schneider, P., and Schneider, G. (2016). De Novo design at the Edge of Chaos.
J. Med. Chem. 59, 4077–4086. doi:10.1021/acs.jmedchem.5b01849

Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow,
R. A., et al. (2019). Rethinking Drug Design in the Artificial Intelligence Era.
Nat. Rev. Drug Discov. 19, 353–364. doi:10.1038/s41573-019-0050-3

Schütt, K. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A., and Müller, K. R.
(2018). SchNet - A Deep Learning Architecture for Molecules and Materials.
J. Chem. Phys. 148, 241722. doi:10.1063/1.5019779

Seo, S., Choi, J., Park, S., and Ahn, J. (2021). Binding Affinity Prediction for
Protein-Ligand Complex Using Deep Attention Mechanism Based on
Intermolecular Interactions. BMC Bioinforma. 22. doi:10.1186/s12859-021-
04466-0

Shen, C., Hu, Y., Wang, Z., Zhang, X., Pang, J., Wang, G., et al. (2020a). Beware
of the Generic Machine Learning-Based Scoring Functions in Structure-
Based Virtual Screening. Brief. Bioinform. 22, bbaa070. doi:10.1093/bib/
bbaa070

Shen, C., Hu, Y., Wang, Z., Zhang, X., Zhong, H., Wang, G., et al. (2020b). Can
Machine Learning Consistently Improve the Scoring Power of Classical Scoring
Functions? Insights into the Role of Machine Learning in Scoring Functions.
Brief. Bioinform. 22, 497–514. doi:10.1093/bib/bbz173

Shen, C., Ding, J., Wang, Z., Cao, D., Ding, X., and Hou, T. (2019). From Machine
Learning to Deep Learning: Advances in Scoring Functions for Protein-Ligand
Docking. WIREs Comput. Mol. Sci. 10, e1429. doi:10.1002/wcms.1429

Shen, C., Hu, X., Gao, J., Zhang, X., Zhong, H., Wang, Z., et al. (2021). The Impact
of Cross-Docked Poses on Performance of Machine Learning Classifier for
Protein-Ligand Binding Pose Prediction. J. Cheminform 13, 1–18. doi:10.1186/
s13321-021-00560-w

Sheridan, R. P. (2019). Interpretation of QSAR Models by Coloring Atoms
According to Changes in Predicted Activity: How Robust Is it? J. Chem. Inf.
Model. 59, 1324–1337. doi:10.1021/acs.jcim.8b00825

Shin, B., Park, S., Kang, K., and Ho, J. C. (2019). “Self-attention Based Molecule
Representation for Predicting Drug-Target Interaction,” in Proceedings of the

4th Machine Learning for Healthcare Conference. Proceedings of Machine
Learning Research (PMLR 106), 230–248.

Shin, W. H., Kim, J. K., Kim, D. S., and Seok, C. (2013). GalaxyDock2: Protein-
Ligand Docking Using Beta-Complex and Global Optimization. J. Comput.
Chem. 34, 2647–2656. doi:10.1002/jcc.23438

Shin, W. H., and Seok, C. (2012). GalaxyDock: Protein-Ligand Docking with
Flexible Protein Side-Chains. J. Chem. Inf. Model. 52, 3225–3232. doi:10.1021/
ci300342z

Shoichet, B. K., Kuntz, I. D., and Bodian, D. L. (1992). Molecular Docking Using
Shape Descriptors. J. Comput. Chem. 13, 380–397. doi:10.1002/jcc.540130311

Sieg, J., Flachsenberg, F., and Rarey, M. (2019). In Need of Bias Control: Evaluating
Chemical Data for Machine Learning in Structure-Based Virtual Screening.
J. Chem. Inf. Model. 59, 947–961. doi:10.1021/acs.jcim.8b00712

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2013). Computational
Methods in Drug Discovery. Pharmacol. Rev. 66, 334–395. doi:10.1124/pr.112.
007336

Smith, J. S., Isayev, O., and Roitberg, A. E. (2017). ANI-1: An Extensible Neural
Network Potential with DFT Accuracy at Force Field Computational Cost.
Chem. Sci. 8, 3192–3203. doi:10.1039/c6sc05720a

Smith, R. D., Clark, J. J., Ahmed, A., Orban, Z. J., Dunbar, J. B., and Carlson, H. A.
(2019). Updates to Binding MOAD (Mother of All Databases):
Polypharmacology Tools and Their Utility in Drug Repurposing. J. Mol.
Biol. 431, 2423–2433. doi:10.1016/j.jmb.2019.05.024

Smith, R. D., Damm-Ganamet, K. L., Dunbar, J. B., Ahmed, A., Chinnaswamy, K.,
Delproposto, J. E., et al. (2015). CSAR Benchmark Exercise 2013: Evaluation of
Results from a Combined Computational Protein Design, Docking, and
Scoring/Ranking Challenge. J. Chem. Inf. Model. 56, 1022–1031. doi:10.
1021/acs.jcim.5b00387

Smith, R. D., Dunbar, J. B., Ung, P. M., Esposito, E. X., Yang, C. Y., Wang, S., et al.
(2011). CSAR Benchmark Exercise of 2010: Combined Evaluation across All
Submitted Scoring Functions. J. Chem. Inf. Model. 51, 2115–2131. doi:10.1021/
ci200269q

Soleimany, A. P., Amini, A., Goldman, S., Rus, D., Bhatia, S. N., and Coley, C.
W. (2021). Evidential Deep Learning for Guided Molecular Property
Prediction and Discovery. ACS Cent. Sci. 7, 1356–1367. doi:10.1021/
acscentsci.1c00546

Son, J., and Kim, D. (2021). Development of a Graph Convolutional Neural
Network Model for Efficient Prediction of Protein-Ligand Binding Affinities.
PLoS One 16, e0249404. doi:10.1371/journal.pone.0249404

Sotriffer, C. A., Sanschagrin, P., Matter, H., and Klebe, G. (2008). SFCscore: Scoring
Functions for Affinity Prediction of Protein-Ligand Complexes. Proteins 73,
395–419. doi:10.1002/prot.22058

Spearman, C. (2010). The Proof and Measurement of Association between Two
Things. Int. J. Epidemiol. 39, 1137–1150. doi:10.1093/ije/dyq191

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

Stafford, K. A., Anderson, B. M., Sorenson, J., and van den Bedem, H. (2022).
AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in
Virtual High-Throughput Screens. J. Chem. Inf. Model. 62, 1178–1189. doi:10.
1021/acs.jcim.1c01250

Stepniewska-Dziubinska, M. M., Zielenkiewicz, P., and Siedlecki, P. (2018).
Development and Evaluation of a Deep Learning Model for Protein-Ligand
Binding Affinity Prediction. Bioinformatics 34, 3666–3674. doi:10.1093/
bioinformatics/bty374

Štrumbelj, E., Kononenko, I., and Robnik Šikonja, M. (2009). Explaining Instance
Classifications with Interactions of Subsets of Feature Values. Data & Knowl.
Eng. 68, 886–904. doi:10.1016/j.datak.2009.01.004

Su, M., Feng, G., Liu, Z., Li, Y., and Wang, R. (2020). Tapping on the Black Box:
How Is the Scoring Power of a Machine-Learning Scoring Function Dependent
on the Training Set? J. Chem. Inf. Model. 60, 1122–1136. doi:10.1021/acs.jcim.
9b00714

Su, M., Yang, Q., Du, Y., Feng, G., Liu, Z., Li, Y., et al. (2018). Comparative
Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model.
59, 895–913. doi:10.1021/acs.jcim.8b00545

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic Attribution for Deep
Networks,” in Proceedings of the 34th International Conference on Machine
Learning. Proceedings of Machine Learning Research (PMLR), 3319–3328.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598328

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1021/ct4004228
https://doi.org/10.1371/journal.pone.0032036
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1002/ps.2780360212
https://doi.org/10.1002/ps.2780360212
https://doi.org/10.1021/acs.jcim.0c00263
https://doi.org/10.1016/j.molmet.2020.02.013
https://doi.org/10.1016/j.molmet.2020.02.013
https://doi.org/10.1002/anie.201814681
https://doi.org/10.1002/anie.201814681
https://doi.org/10.1021/acs.jmedchem.5b01849
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1063/1.5019779
https://doi.org/10.1186/s12859-021-04466-0
https://doi.org/10.1186/s12859-021-04466-0
https://doi.org/10.1093/bib/bbaa070
https://doi.org/10.1093/bib/bbaa070
https://doi.org/10.1093/bib/bbz173
https://doi.org/10.1002/wcms.1429
https://doi.org/10.1186/s13321-021-00560-w
https://doi.org/10.1186/s13321-021-00560-w
https://doi.org/10.1021/acs.jcim.8b00825
https://doi.org/10.1002/jcc.23438
https://doi.org/10.1021/ci300342z
https://doi.org/10.1021/ci300342z
https://doi.org/10.1002/jcc.540130311
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1016/j.jmb.2019.05.024
https://doi.org/10.1021/acs.jcim.5b00387
https://doi.org/10.1021/acs.jcim.5b00387
https://doi.org/10.1021/ci200269q
https://doi.org/10.1021/ci200269q
https://doi.org/10.1021/acscentsci.1c00546
https://doi.org/10.1021/acscentsci.1c00546
https://doi.org/10.1371/journal.pone.0249404
https://doi.org/10.1002/prot.22058
https://doi.org/10.1093/ije/dyq191
https://doi.org/10.1021/acs.jcim.1c01250
https://doi.org/10.1021/acs.jcim.1c01250
https://doi.org/10.1093/bioinformatics/bty374
https://doi.org/10.1093/bioinformatics/bty374
https://doi.org/10.1016/j.datak.2009.01.004
https://doi.org/10.1021/acs.jcim.9b00714
https://doi.org/10.1021/acs.jcim.9b00714
https://doi.org/10.1021/acs.jcim.8b00545
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Sunseri, J., King, J. E., Francoeur, P. G., and Koes, D. R. (2018). Convolutional
Neural Network Scoring and Minimization in the D3R 2017 Community
Challenge. J. Comput. Aided Mol. Des. 33, 19–34. doi:10.1007/s10822-018-
0133-y

Sunseri, J., and Koes, D. R. (2020). Libmolgrid: Graphics Processing Unit
Accelerated Molecular Gridding for Deep Learning Applications. J. Chem.
Inf. Model. 60, 1079–1084. doi:10.1021/acs.jcim.9b01145

Szegedy, C., Toshev, A., and Erhan, D. (2013). Deep Neural Networks for Object
Detection.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). “A Survey on
Deep Transfer Learning,” in International Conference on Artificial Neural
Networks (Springer), 270–279. doi:10.1007/978-3-030-01424-7_27

Tin Kam Ho, T. K. (1995). “Random Decision Forests,” in Proceedings of 3rd
International Conference on Document Analysis and Recognition (IEEE
Comput. Soc. Press), 1, 278–282. doi:10.1109/icdar.1995.598994

Tin Kam Ho, T. K. (1998). The Random Subspace Method for Constructing
Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844. doi:10.
1109/34.709601

Tropsha, A. (2010). Best Practices for QSAR Model Development, Validation, and
Exploitation. Mol. Inf. 29, 476–488. doi:10.1002/minf.201000061

Trott, O., and Olson, A. J. (2009). AutoDock Vina: Improving the Speed and
Accuracy of Docking with a New Scoring Function, Efficient Optimization, and
Multithreading. J. Comput. Chem. 31, 455–461. NA–NA. doi:10.1002/jcc.21334

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T.,
et al. (2021). Machine Learning Force Fields. Chem. Rev. 121, 10142–10186.
doi:10.1021/acs.chemrev.0c01111

Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J. K., Ceulemans,
H., et al. (2014). Deep Learning as an Opportunity in Virtual Screening. Proc.
deep Learn. workshop A. T. NIPS 27, 1–9.

Vainio, M. J., Puranen, J. S., and Johnson, M. S. (2009). ShaEP: Molecular Overlay
Based on Shape and Electrostatic Potential. J. Chem. Inf. Model. 49, 492–502.
doi:10.1021/ci800315d

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al.
(2019). Applications of Machine Learning in Drug Discovery and
Development. Nat. Rev. Drug Discov. 18, 463–477. doi:10.1038/s41573-019-
0024-5

vanWesten, G. J., Wegner, J. K., Geluykens, P., Kwanten, L., Vereycken, I., Peeters,
A., et al. (2011). Which Compound to Select in Lead Optimization?
Prospectively Validated Proteochemometric Models Guide Preclinical
Development. PLoS ONE 6, e27518. doi:10.1371/journal.pone.0027518

Varela-Rial, A., Maryanow, I., Majewski, M., Doerr, S., Schapin, N., Jiménez-Luna,
J., et al. (2022). PlayMolecule Glimpse: Understanding Protein-Ligand Property
Predictions with Interpretable Neural Networks. J. Chem. Inf. Model. 62,
225–231. doi:10.1021/acs.jcim.1c00691

Velec, H. F., Gohlke, H., and Klebe, G. (2005). DrugScore(CSD)-knowledge-
based Scoring Function Derived from Small Molecule Crystal Data with
Superior Recognition Rate of Near-Native Ligand Poses and Better
Affinity Prediction. J. Med. Chem. 48, 6296–6303. doi:10.1021/
jm050436v

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph Attention Networks. arXiv preprint arXiv:1710.10903.

Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., and Taylor, R. D.
(2003). Improved Protein-Ligand Docking Using GOLD. Proteins 52, 609–623.
doi:10.1002/prot.10465

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep
Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018,
7068349–7068413. doi:10.1155/2018/7068349

Wallach, I., Dzamba, M., and Heifets, A. (2015). AtomNet: A Deep Convolutional
Neural Network for Bioactivity Prediction in Structure-Based Drug Discovery.
arXiv preprint arXiv:1510.02855, 1-13.

Wang, C., and Zhang, Y. (2016). Improving Scoring-Docking-Screening Powers of
Protein-Ligand Scoring Functions Using Random Forest. J. Comput. Chem. 38,
169–177. doi:10.1002/jcc.24667

Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). The PDBbind Database:
Collection of Binding Affinities for Protein-Ligand Complexes with
Known Three-Dimensional Structures. J. Med. Chem. 47, 2977–2980.
doi:10.1021/jm030580l

Wang, R., Fang, X., Lu, Y., Yang, C. Y., and Wang, S. (2005). The PDBbind
Database: Methodologies and Updates. J. Med. Chem. 48, 4111–4119. doi:10.
1021/jm048957q

Wang, R., Lai, L., and Wang, S. (2002). Further Development and Validation of
Empirical Scoring Functions for Structure-Based Binding Affinity Prediction.
J. Comput. Aided Mol. Des. 16, 11–26. doi:10.1023/a:1016357811882

Wang, R., and Wang, S. (2001). How Does Consensus Scoring Work for Virtual
Library Screening? an Idealized Computer Experiment. J. Chem. Inf. Comput.
Sci. 41, 1422–1426. doi:10.1021/ci010025x

Wang, S., Liu, D., Ding, M., Du, Z., Zhong, Y., Song, T., et al. (2021b1805). Se-
onionnet: a Convolution Neural Network for Protein–Ligand Binding Affinity
Prediction Front. Genet.

Wang, S., Liu, D., Ding, M., Du, Z., Zhong, Y., Song, T., et al. (2021a). SE-
OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity
Prediction. Front. Genet. 11, 1805. doi:10.3389/fgene.2020.607824

Wang, S., and Riniker, S. (2020). Chapter 9. Machine Learning in the Area of
Molecular Dynamics Simulations. Artif. Intell. Drug Discov. 75, 184–214.
doi:10.1039/9781788016841-00184

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., and Bryant, S. H. (2009).
PubChem: A Public Information System for Analyzing Bioactivities of Small
Molecules. Nucleic Acids Res. 37, W623–W633. doi:10.1093/nar/gkp456

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., et al. (2011).
PubChem’s BioAssay Database. Nucleic Acids Res. 40, D400–D412. doi:10.
1093/nar/gkr1132

Wang, Y., Wu, S., Duan, Y., and Huang, Y. (2021c). A Point Cloud-Based Deep
Learning Strategy for Protein-Ligand Binding Affinity Prediction. Brief.
Bioinform. 23. doi:10.1093/bib/bbab474

Wang, Z., Zheng, L., Liu, Y., Qu, Y., Li, Y.-Q., Zhao, M., et al. (2021d). OnionNet-2:
A Convolutional Neural Network Model for Predicting Protein-Ligand Binding
Affinity Based on Residue-Atom Contacting Shells. Front. Chem. 9, 913. doi:10.
3389/fchem.2021.753002

Wee, J., and Xia, K. (2021). Ollivier Persistent Ricci Curvature-Based Machine
Learning for the Protein-Ligand Binding Affinity Prediction. J. Chem. Inf.
Model. 61, 1617–1626. doi:10.1021/acs.jcim.0c01415

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. (2018). 3d
Steerable Cnns: Learning Rotationally Equivariant Features in Volumetric Data.
arXiv preprint arXiv:1807.02547.

Wellawatte, G. P., Seshadri, A., and White, A. D. (2022). Model Agnostic
Generation of Counterfactual Explanations for Molecules. Chem. Sci. doi:10.
1039/d1sc05259d

Widrow, B., and Hoff, M. E. (1960). Adaptive Switching Circuits. Tech. Rep.
Stanford Univ Ca Stanford Electronics Labs. doi:10.21236/ad0241531

Wieder, M., Fass, J., and Chodera, J. D. (2021). Teaching Free Energy Calculations
to Learn from Experimental Data. bioRxiv.

Williams, C. K., and Rasmussen, C. E. (1996). Gaussian Processes for Regression.
Winkler, D. A., and Le, T. C. (2016). Performance of Deep and Shallow Neural

Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
Mol. Inf. 36, 1600118. doi:10.1002/minf.201600118

Wójcikowski, M., Kukiełka, M., Stepniewska-Dziubinska, M. M., and Siedlecki, P.
(2018). Development of a Protein-Ligand Extended Connectivity (PLEC)
Fingerprint and its Application for Binding Affinity Predictions.
Bioinformatics 35, 1334–1341. doi:10.1093/bioinformatics/bty757

Wójcikowski, M., Zielenkiewicz, P., and Siedlecki, P. (2015). Open Drug Discovery
Toolkit (ODDT): A New Open-Source Player in the Drug Discovery Field.
J. Cheminform 7, 26–6. doi:10.1186/s13321-015-0078-2

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). MoleculeNet: A Benchmark for Molecular Machine Learning. Chem.
Sci. 9, 513–530. doi:10.1039/c7sc02664a

Xavier, M. M., Heck, G. S., Avila, M. B., Levin, N. M. B., Pintro, V. O., Carvalho,
N. L., et al. (2016). SAnDReS a Computational Tool for Statistical Analysis of
Docking Results and Development of Scoring Functions. Comb. Chem.
High. Throughput Screen 19, 801–812. doi:10.2174/
1386207319666160927111347

Xiong, G., Shen, C., Yang, Z., Jiang, D., Liu, S., Lu, A., et al. (2021). Featurization
Strategies for Protein-Ligand Interactions and Their Applications in Scoring
Function Development.WIREs Comput. Mol. Sci. 12, e1567. doi:10.1002/wcms.
1567

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598329

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1007/s10822-018-0133-y
https://doi.org/10.1007/s10822-018-0133-y
https://doi.org/10.1021/acs.jcim.9b01145
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1109/icdar.1995.598994
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1021/ci800315d
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1371/journal.pone.0027518
https://doi.org/10.1021/acs.jcim.1c00691
https://doi.org/10.1021/jm050436v
https://doi.org/10.1021/jm050436v
https://doi.org/10.1002/prot.10465
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1002/jcc.24667
https://doi.org/10.1021/jm030580l
https://doi.org/10.1021/jm048957q
https://doi.org/10.1021/jm048957q
https://doi.org/10.1023/a:1016357811882
https://doi.org/10.1021/ci010025x
https://doi.org/10.3389/fgene.2020.607824
https://doi.org/10.1039/9781788016841-00184
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1093/nar/gkr1132
https://doi.org/10.1093/nar/gkr1132
https://doi.org/10.1093/bib/bbab474
https://doi.org/10.3389/fchem.2021.753002
https://doi.org/10.3389/fchem.2021.753002
https://doi.org/10.1021/acs.jcim.0c01415
https://doi.org/10.1039/d1sc05259d
https://doi.org/10.1039/d1sc05259d
https://doi.org/10.21236/ad0241531
https://doi.org/10.1002/minf.201600118
https://doi.org/10.1093/bioinformatics/bty757
https://doi.org/10.1186/s13321-015-0078-2
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.2174/1386207319666160927111347
https://doi.org/10.2174/1386207319666160927111347
https://doi.org/10.1002/wcms.1567
https://doi.org/10.1002/wcms.1567
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Xu, Y., Verma, D., Sheridan, R. P., Liaw, A., Ma, J., Marshall, N. M., et al. (2020).
Deep Dive intoMachine LearningModels for Protein Engineering. J. Chem. Inf.
Model. 60, 2773–2790. doi:10.1021/acs.jcim.0c00073

Yakovenko, O., and Jones, S. J. M. (2017). Modern Drug Design: The Implication of
Using Artificial Neuronal Networks and Multiple Molecular Dynamic Simulations.
J. Comput. Aided Mol. Des. 32, 299–311. doi:10.1007/s10822-017-0085-7

Yang, C., and Zhang, Y. (2021). Lin_F9: A Linear Empirical Scoring Function for
Protein-Ligand Docking. J. Chem. Inf. Model. 61, 4630–4644. doi:10.1021/acs.
jcim.1c00737

Yang, C. Y., Wang, R., and Wang, S. (2005). M-score: A Knowledge-Based
Potential Scoring Function Accounting for Protein Atom Mobility. J. Med.
Chem. 49, 5903–5911. doi:10.1021/jm050043w

Yang, J., Shen, C., and Huang, N. (2020). Predicting or Pretending: Artificial
Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and
Unbiased Datasets. Front. Pharmacol. 11, 69. doi:10.3389/fphar.2020.00069

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., et al. (2019). Analyzing
Learned Molecular Representations for Property Prediction. J. Chem. Inf.
Model. 59, 3370–3388. doi:10.1021/acs.jcim.9b00237

Yang, Z., Zhong, W., Zhao, L., and Yu-Chian Chen, C. (2022). MGraphDTA: Deep
Multiscale Graph Neural Network for Explainable Drug-Target Binding
Affinity Prediction. Chem. Sci. 13, 816–833. doi:10.1039/d1sc05180f

Yeturu, K., and Chandra, N. (2008). PocketMatch: A New Algorithm to Compare
Binding Sites in Protein Structures. BMC Bioinforma. 9, 1–17. doi:10.1186/
1471-2105-9-543

Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). Gnnexplainer:
Generating Explanations for Graph Neural Networks. Adv. Neural Inf. Process
Syst. 32, 9240–9251.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent Trends in Deep
Learning Based Natural Language Processing [Review Article]. IEEE Comput.
Intell. Mag. 13, 55–75. doi:10.1109/mci.2018.2840738

Yu, Y., Abadi, M., Barham, P., Brevdo, E., Burrows, M., Davis, A., et al. (2018).
Dynamic Control Flow in Large-Scale Machine Learning. In Proceedings of the
Thirteenth EuroSys Conference (ACM), 265–283. doi:10.1145/3190508.3190551

Yuan, H., Yu, H., Gui, S., and Ji, S. (2020). Explainability in Graph Neural Networks:
A Taxonomic Survey. arXiv preprint arXiv:2012.15445.

Zhang, J., Shi, X., Xie, J., Ma, H., King, I., and Yeung, D.-Y. (2018). Gaan: Gated
Attention Networks for Learning on Large and Spatiotemporal Graphs. arXiv
preprint arXiv:1803.07294.

Zhao, Q., Xiao, F., Yang, M., Li, Y., and Wang, J. (2019). “AttentionDTA:
Prediction of Drug-Target Binding Affinity Using Attention Model,” in
2019 IEEE International Conference on Bioinformatics and Biomedicine
(IEEE), 64–69. doi:10.1109/bibm47256.2019.8983125

Zheng, L., Fan, J., and Mu, Y. (2019). OnionNet: a Multiple-Layer Intermolecular-
Contact-Based Convolutional Neural Network for Protein-Ligand Binding
Affinity Prediction. ACS Omega 4, 15956–15965. doi:10.1021/acsomega.
9b01997

Zheng, Z., and Merz, K. M. (2013). Development of the Knowledge-Based and
Empirical Combined Scoring Algorithm (KECSA) to Score Protein-
Ligand Interactions. J. Chem. Inf. Model. 53, 1073–1083. doi:10.1021/
ci300619x

Zhou, Y.-T., Chellappa, R., Vaid, A., and Jenkins, B. K. (1988). Image Restoration
Using a Neural Network. IEEE Trans. Acoust. Speech, Signal Process. 36,
1141–1151. doi:10.1109/29.1641

Zhu, F., Zhang, X., Allen, J. E., Jones, D., and Lightstone, F. C. (2020). Binding
Affinity Prediction by Pairwise Function Based on Neural Network. J. Chem.
Inf. Model. 60, 2766–2772. doi:10.1021/acs.jcim.0c00026

Zilian, D., and Sotriffer, C. A. (2013). SFCscore(RF): a Random Forest-Based
Scoring Function for Improved Affinity Prediction of Protein-Ligand
Complexes. J. Chem. Inf. Model. 53, 1923–1933. doi:10.1021/ci400120b

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Meli, Morris and Biggin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 88598330

Meli et al. Deep Learning for Scoring Functions

https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1007/s10822-017-0085-7
https://doi.org/10.1021/acs.jcim.1c00737
https://doi.org/10.1021/acs.jcim.1c00737
https://doi.org/10.1021/jm050043w
https://doi.org/10.3389/fphar.2020.00069
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1039/d1sc05180f
https://doi.org/10.1186/1471-2105-9-543
https://doi.org/10.1186/1471-2105-9-543
https://doi.org/10.1109/mci.2018.2840738
https://doi.org/10.1145/3190508.3190551
https://doi.org/10.1109/bibm47256.2019.8983125
https://doi.org/10.1021/acsomega.9b01997
https://doi.org/10.1021/acsomega.9b01997
https://doi.org/10.1021/ci300619x
https://doi.org/10.1021/ci300619x
https://doi.org/10.1109/29.1641
https://doi.org/10.1021/acs.jcim.0c00026
https://doi.org/10.1021/ci400120b
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review
	1 Introduction
	2 Classical Scoring Functions
	2.1 Physics-Based (Force-Field Based) Scoring Functions
	2.2 Empirical (Regression-Based) Scoring Functions
	2.3 Knowledge-Based (Potential-Based) Scoring Functions

	3 Data Sets
	3.1 PDBbind
	3.1.1 CASF
	3.2 Binding MOAD
	3.2.1 CSAR
	3.3 Astex Diverse Set
	3.4 Other Data Sets

	4 Machine Learning and Deep Learning Scoring Functions
	4.1 Descriptors
	4.2 Overview of Classical Machine Learning Scoring Functions
	4.3 Feed-Forward Neural Networks
	4.4 Convolutional Neural Networks
	4.5 Graph Neural Networks
	4.6 Other Methods

	5 Training and Evaluation
	5.1 Back-Propagation, Regularization and Transfer Learning
	5.2 Evaluation
	5.3 Cross-Validation and Data Splitting

	6 Explainable AI
	7 Discussion and Conclusion
	Author Contributions
	Funding
	References


