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Ab initio Molecular Dynamics (AIMD) is a versatile tool to determine static and Quality of the trajectories evaluated on the base of: ™ /./' —
dynamic properties of biomolecular and condensed phase systems in ground N Bl
as well as electronically excited states. Unfortunately, the feasibility of AIMD - Fluctuations of the total energy: e = — Z Nl [P / |
simulations of extended systems is often limited by its high computational cost. N~ E |2 | & e veloiyveret s
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improving the computational efficiency of MD simulations. P Prop o1z 5 4 s
We present here our implementation, and first applications, of two time- > Fig.2: Logarithm of the total energy fluctuation along a [~ meeome |

reversible MTS algorithms [2,3] in the Density Functional Theory (DFT) based trajectory 26ps-long (upper panel) and vibrational spectra
ab initio Molecular Dynamics code, CPMD[4]. The timescale separation is (lower panel) for an acetone molecule in aqueous solution, .o ﬂiii?f.iffs | |
achieved through introducing “reference” fast forces (Fi.r) and slow obtained with Velocity Verlet BOMD (PBE and PBEO - ‘

“corrections” (AF). The first algorithm, based on ab initio evaluation of both Fr.r functionals) and with PBE/PBEO-MTSM dynamics.
and AF, uses quantum mechanical (QM) electronic structure methods of
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different accuracy; the second uses classical forces (based on force fields) in ,»'"”3'\ J \
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timescales with ab initio accuracy. J f» il |
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- To reduce the computational cost of MD simulations, in MTS algorithms[1]

functions, obtained with LDA-VV MD (blue), PBEO-VV (red) and LDA/PBEO-MTS4 MD

(magenta). For comparison, the same quantities from Ref.[7a] and[7b] are also shown in
orange and green. (c) Summary of the performances of the MTS scheme: CPU time per step,
speedup (S) and efficiency (W) as a function of the outer time step value Dr.

- The present MTS algorithm can be derived from the time-reversible
Reference System Propagation Algorithm (r-RESPA) of Tuckermann and

Martyna[1]. 6 | o
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v Fig.5: C-O, C-H and C-C bond distributions in an acetone molecule solvated in water, along

Trotter factorisation. introduction of two time-step lenaths. ds and Di=Md+: a classical trajectory using an AMBER force field (green), a PBE-VV trajectory (magenta), and
otler factorisation, oduction o O e-step lehgins, at a two MM/QMMM MTS trajectories corresponding to M=1 (blue) and M=2 (red).
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T w1 w3 varies on a longer timescale compared

to the absolute force. ﬁrther Developments and Ongoing Work \
To improve the computational performances, the present MTS scheme will be
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- Time gain:

° Ideal Speedup S:M/(] _I_Mﬁ ~ M, Wheref:TCPU(reference)/TCPU(higher accuracy)- COmbIned Wlth
» If Thigh = period of the fastest vibration of the system, DMAX= T/z, MMAX~](), j - A Generalised Langevin stochastic thermostat[5] to further increase the outer
time step.

mTS Dynamics in the CPMD Code \ - An algorithm for the on-the-fly adaptation of the outer time step, to always

. . . | maintain the optimal balance between accuracy and efficiency.
We implemented the following features in the CPMD codef4]: » Machine Learning techniques and schemes for fast evaluation of exact

exchange (see box below), for better efficiency.

* NVE or NVT, in combination with available thermostats (e.g. Langevin[5]).

* DFT based: Full QM and QM/MM MD.
- Interfaces with TURBOMOLE v6.2 and GAUSSIAN G09[6], to use electronic

Fast Evaluation of Exact Exchange (EEX) Energies and Potentials

methods beyond DFT in the correction steps (available for full QM only). * Ongoing development of a new scheme within plane-wave/pseudo-potential,
Kohn-Sham DFT, based on spectral splitting of the potential:
2.MTS for QM/MM with classical reference and QM-based correction: . Short-range (expanded on atomic basis  , precomputed and stored).
* NVE or NVT, in combination with available thermostats (e.g. Langevin[5]). . Long-range (residual function on a coarser grid, then interpolated).
Test Systems: Computational Details pii (Ry) = i (Ry); (Ry) — YYCQXQ (Ry) cl, = <Xg‘¢z‘¢j> (4)
System Acetone (1) Acetone (2) Water Dimer Liquid Water
# Molecules 1 (+ 3000 wat.) 1 (+ 3000 wat.) 2 32 . N _ _ 4T |
QM box (A) 33x33x33 33x33x33 15x15x15 9.939x9.939x9.939 Standard CPMD expression: Ui (R) =kl { (12 [FFTwz( )wj (R)]} ()
Basis sets High/Low | PW(70Ry)/PW(70Ry) | PW(70Ry)/PW(70Ry) | PW(90Ry)/aug-cc-pVTZ | PW(70Ry)/PW(70Ry) . R elw l
Electronic Methods PBE/PBEO FF / PBE PBE/MP2 LDA/PBEO P_resent _expre?smn. : Vij (Rw) — > » (Rw) T PR (Rw) [U’LJ (Rp)] (6)
Inner/Outer Time Step (fs) 0.48/4.8 1.00/2.00 0.36/1.80 0.24/0.96 (tlme gam ~ a tactor 6) o l
feferences 4] CPMD, Copyright IBM Corp 1990-2001, Copyright MPI Stuttgart (1997-2004). N
5] M. Ceriotti, G. Bussi and M. Parrinello, J. Chem. Theory Comput. 6, 1170 (2010).
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