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Functionality

e Hartree-Fock and DFT

e [ime-dependent DFT

e Embedded Mean Field Theory (EMFT)
e [ime-dependent EMFT

e Gaussian basis sets

e LDA, GGA, hybrid and dispersion-corrected functionals

e Coulomb and exact exchange density fitting

e DIIS and Fock extrapolation

e Fock-matrix corrections

e Ab initio Born-Oppenheimer molecular dynamics
e Nuclear quantum dynamics (RPMD)

e Effective core potentials

e Geometry optimisation
e Unsold UW12 correlation in DFT

entos is a new density functional theory code with a focus on mean field embedding and
first-principles molecular dynamics simulations. entos is written in modern C++4 using
state-of-the-art software engineering concepts and nested parallelisation, with the goal of being
extensible, easy to maintain and fast.

Caltech

Embedded Mean-Field Theory (EMFT) [1]

Density matrix partitioning:

( DAA

DBA

\ /

D”A: Density matrix of the active region
DBB: Density matrix of the environment
DB DBA: Subsystems coupling

Advantages of EMFT:

e Parameter free

e Electron transfer between subsystems
e Reduced number of basis function

e Reduced cost of exchange calculation

e Simple gradient theory

Energy expression for DFT-in-DF T embedding:

EEMFT[D] = EL[D] — EL[DA] + EH[DA]

Energy gradients w.r.t. nuclear coordinates:

oF

~=[D] = Tr (DF™) — T (Ws')

W: energy-weighted density matrix

Software Engineering

e Extensive use of modern C++

aimd (
nsteps = 10
time_step = 0.5
structure( molecule = ’h2o0.xyz’ )
save_trajectory_info = true

—Smart pointers

— Move semantics

extrapolation(
type = FMD
nsteps = 4
polynomial_degree = 2

e Input options from documentation

e Extensive unit tests (w/ Catch?2)

Linear-response TD-EMFT

BHLYP/6-311++G**

Sulfur K-edge X-ray Absorption Description of excited states within EMFT.

TD-EMFT eigenvalue equation:
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e Nested parallelism (w/ Intel TBB)

_ _ _ o gradient (
e Generic and flexible functionalities aeC (&
xc = ¢ ;
L : basis = ’cc-pVDZ’
Generlc SCF density_fitting = true \ e J/
— Multiple spin/particle channels | Giobasie m TeerpibEn R
: )
— Generic Fock operators )

Geometry Optimisation

Optimisation algorithm: Quasi-Newton method with BFGS Hessian update.

R, = (z1,y1,21)

RIC to Cartesian

—_— .
Cartesian to RIC

Ry = (2, y2, 22)

R3 — (33'3, Y3, Z3)

Redundant internal coordinates [3]: CCRIC A 6§
e Based on connectivity H,O 6 4 —2 —33%
e Automatically generated CH;OH 13 5 -8 —62%
e Natural description GHs 15 6 =9 —60%
. . CoHsOH 17 5 —12 —71%
o D.ecoupyerg. of dlffe.rent D.OF C:HO 19 6 —13 —63%
e Simple initial Hessian estimate CiHsO5 52 13 —39 —75%
e Easy to apply constraints CoHg 16 6 —10 —63%

Transformations between cartesian coordinates (CC) and redundant internal coordinates
(RIC) have been implemented in an open-source library written in modern C++.

github.com/RMeli/irc
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Unsold-W12 (UW12) correlation energy:
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wyo: geminal operator

Unssld-W12 hybrid functional (XCH-BLYP-UW12);
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Advantages of [ over

Reaction Barrier Heights

Atomization Energies

e Rapid basis-set convergence

e Avoid divergences in denominator

e Full self-consistent optimisation

S +1kcal mol !
BN B3LYP3

_10L I B3LYP3(HF-DFT)
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e Straightforward gradient theory
e O(N*) scaling
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