

Learning Protein-Ligand Binding Affinity Using **Atomic Environment Vectors**

Rocco Meli,¹ Andrew Anighoro,² Mike Bodkin,² Garrett M. Morris,³ Philip C. Biggin¹

¹ Department of Biochemistry, University of Oxford ³ Department of Statistics, University of Oxford ² Evotec (UK), Abingdon

 $f_c(R_{ij}) =$

Introduction

- Molecular docking is extremely useful for virtual screening
- Classical docking scoring functions (SFs) poorly predict protein-ligand (P-L) binding affinity
- Machine Learning (ML) and Deep Learning (DL) SFs outperform classical SFs
 - Convolutional neural network (CNN) SFs perform well [2]
 - CNN SFs are not rotationally invariant
 - CNN SFs need data augmentation (slow/expensive)

Can we use representations and architectures from ML/DL in quantum chemistry to develop docking scoring functions that are rotationally and

Atomic Environment Vectors (AEVs) and NNs [3,4,5]

AEVs capture the local chemical environment of an atom; they represent a fine-grained and environment-dependent atom type (fingerprint). Locality is enforced by a cutoff function: $R_{ij} \le R_c$

The AEV for oxygen in formaldehyde interacting with tyrosine encodes the radial and angular distribution of all atoms within the cutoff

translationally invariant without the need of extensive data augmentation?

Scoring:CASF2013 and CASF2016 Benchmarks

AEScore-predicted Δ Gs show good correlation with experimental Δ Gs

By construction, **AEVs are** rotationally and translationally invariant.

A collection of NNs allows to compute atomic contributions from AEVs, which are summed together to obtain the final prediction. This architecture has been very successful to build NN potentials [3,4].

∆-learning

Can the method also be used for docking and screening? We can learn corrections Δ to AutoDock Vina instead of the binding affinity directly:

 $\Delta - \text{AEScore} = S_{\text{Vina}} + \Delta$

Scoring, Ranking, Docking and Screening (CASF2016)

Per-class variability leaves space for fine tuning (transfer learning)

Scoring: Comparison with Other Deep Learning Scoring Functions

Ligand-Based Performance

The model extracts a lot of 1.5 בי information from the ligand. Introducing a full thermodynamic cycle could improve the model [6]:

 $\Delta G = G_{\rm PL} - G_{\rm P} - G_{\rm L}$

deep learning SFs.

References

[1] Meli *et al.*, J.Cheminform. **13**, 59 (2021) [2] McNutt et al., J. Cheminform. 13, 43 (2021) [3] Behler and Parrinello, PRL 98, 146401 (2007) [4] Smith *et al.*, Chem. Sci. **8**, 3192 (2017) [5] Gao et al., J. Chem. Inf. Model., 60, 3408 (2020) [6] Gomes *et al.*, arXiv, 703.10603 [cs.LG] (2016)

Conclusions

• SOTA performance on binding affinity prediction (AEScore) • Rotationally and translationally invariant predictions (by construction) • Faster training than CNN SFs (no data augmentation required) • Δ -AEScore retains performance of AESCore but improves docking/screening •Many places for further improvements (architecture, AEVs, data, ...)

•Architectures used in quantum ML (QML) can be used to develop SFs

